Find dy/dx and d²y/dx² without eliminating the parameter.
a.) x= t^2 e^t , y= t In(t)
x˙=ddt(t2et)=(t2+2t)et\dot x=\frac{d}{dt}(t^2e^t) = ( t^2 +2t)e^tx˙=dtd(t2et)=(t2+2t)et
y˙=ddt(tlnt)=lnt+1\dot y=\frac{d}{dt}(t\ln t) = \ln t + 1y˙=dtd(tlnt)=lnt+1
dydx=y˙x˙=lnt+1(t2+2t)et\frac{dy}{dx} = \frac{\dot y}{\dot x} = \frac{\ln t +1}{(t^2+2t)e^t}dxdy=x˙y˙=(t2+2t)etlnt+1
ddtdydx=ddtlnt+1(t2+2t)et=1t(t2+2t)et−(lnt+1)et(t2+2t+2t+2)(et(t2+2t))2=t+2−(lnt+1)(t2+4t+2)(t2+2t)2e−t\frac{d}{dt}\frac{dy}{dx} = \frac{d}{dt}\frac{\ln t +1}{(t^2+2t)e^t} = \frac{\frac{1}{t}(t^2+2t)e^t - (\ln t +1)e^t(t^2+2t + 2t+2)}{(e^t(t^2+2t))^2} = \frac{t+2-(\ln t+1)(t^2+4t+2)}{(t^2+2t)^2}e^{-t}dtddxdy=dtd(t2+2t)etlnt+1=(et(t2+2t))2t1(t2+2t)et−(lnt+1)et(t2+2t+2t+2)=(t2+2t)2t+2−(lnt+1)(t2+4t+2)e−t
d2ydx2=1x˙ddtdydx=t+2−(lnt+1)(t2+4t+2)(t2+2t)3e−2t\frac{d^2y}{dx^2} = \frac{1}{\dot x}\frac{d}{dt}\frac{dy}{dx} = \frac{t+2-(\ln t+1)(t^2+4t+2)}{(t^2+2t)^3}e^{-2t}dx2d2y=x˙1dtddxdy=(t2+2t)3t+2−(lnt+1)(t2+4t+2)e−2t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments