Find dy/dx and d²y/dx² without eliminating the parameter.
a.) x= t^2 e^t , y= t In(t)
"\\dot x=\\frac{d}{dt}(t^2e^t) = ( t^2 +2t)e^t"
"\\dot y=\\frac{d}{dt}(t\\ln t) = \\ln t + 1"
"\\frac{dy}{dx} = \\frac{\\dot y}{\\dot x} = \\frac{\\ln t +1}{(t^2+2t)e^t}"
"\\frac{d}{dt}\\frac{dy}{dx} = \\frac{d}{dt}\\frac{\\ln t +1}{(t^2+2t)e^t} = \\frac{\\frac{1}{t}(t^2+2t)e^t - (\\ln t +1)e^t(t^2+2t + 2t+2)}{(e^t(t^2+2t))^2} = \\frac{t+2-(\\ln t+1)(t^2+4t+2)}{(t^2+2t)^2}e^{-t}"
"\\frac{d^2y}{dx^2} = \\frac{1}{\\dot x}\\frac{d}{dt}\\frac{dy}{dx} = \\frac{t+2-(\\ln t+1)(t^2+4t+2)}{(t^2+2t)^3}e^{-2t}"
Comments
Leave a comment