Answer to Question #154290 in Calculus for Papi Chulo

Question #154290

if f(1)= 3 and f '(1)=-2 find d/dx [x^2 f(x) ] when x=1


1
Expert's answer
2021-01-07T16:05:26-0500

Let g(x)=x2f(x)g(x)=x^2f(x)


Differentiate g(x)=x2f(x)g(x)=x^2f(x) with respect to xx using product rule as,


g(x)=ddxg(x)g'(x)=\frac{d}{dx}g(x)


=ddx(x2f(x))=\frac{d}{dx}(x^2f(x))


=x2ddx(f(x))+f(x)ddx(x2)=x^2\frac{d}{dx}(f(x))+f(x)\frac{d}{dx}(x^2)


Use ddx(xn)=nxn1\frac{d}{dx}(x^n)=nx^{n-1} to obtain,


=x2f(x)+f(x)(2x)=x^2f'(x)+f(x)(2x)


=x2f(x)+2xf(x)=x^2f'(x)+2xf(x)


Derivative at x=1x=1 is,


g(1)=(12)f(1)+2(1)f(1)g'(1)=(1^2)f'(1)+2(1)f(1)


=f(1)+2f(1)=f'(1)+2f(1)


Plug f(1)=2f'(1)=-2 and f(1)=3f(1)=3 to obtain g(1)g'(1) as,


g(1)=2+2(3)g'(1)=-2+2(3)


=2+6=-2+6


=4=4


Therefore, the derivative of g(x)=x2f(x)g(x)=x^2f(x) at x=1x=1 is 44 .

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment