Let g(x)=x2f(x)
Differentiate g(x)=x2f(x) with respect to x using product rule as,
g′(x)=dxdg(x)
=dxd(x2f(x))
=x2dxd(f(x))+f(x)dxd(x2)
Use dxd(xn)=nxn−1 to obtain,
=x2f′(x)+f(x)(2x)
=x2f′(x)+2xf(x)
Derivative at x=1 is,
g′(1)=(12)f′(1)+2(1)f(1)
=f′(1)+2f(1)
Plug f′(1)=−2 and f(1)=3 to obtain g′(1) as,
g′(1)=−2+2(3)
=−2+6
=4
Comments
Leave a comment