let f(x)=1/10x^5+1/6x^-3 on[1,2]. find the arc length
L=∫ab1+(f′(x))2dx;L = \int_a^b \sqrt {1+ (f^\prime(x))^2} dx;L=∫ab1+(f′(x))2dx;
f′(x)=0.5∗x4−0.5∗x−4;f^\prime(x) = 0.5*x^4 - 0.5*x^{-4};f′(x)=0.5∗x4−0.5∗x−4;
L=∫121+(0.5∗x4−0.5∗x−4)2dx=∫120.5+0.25∗x8+0.25∗x−8dxL = \int_1^2 \sqrt {1+ (0.5*x^4 - 0.5*x^{-4})^2}dx = \int_1^2 \sqrt {0.5+ 0.25*x^8 + 0.25*x^{-8}}dxL=∫121+(0.5∗x4−0.5∗x−4)2dx=∫120.5+0.25∗x8+0.25∗x−8dx
L=3x8−530x3∣12=763/20+2/30≈3.2458L = \frac{3x ^ 8 - 5}{30x^3} \mid_1^2 = 763 / 20 + 2 / 30 \approx 3.2458L=30x33x8−5∣12=763/20+2/30≈3.2458
ANSWER: 3.2458
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments