We have function f ( x ) = 4 / 3 ∗ f(x) = 4/3 * f ( x ) = 4/3 ∗ x3/2. and interval [2;6]. We can use one formula for finding arc length: l = ∫ a b 1 + ( f ′ ( x ) ) 2 d x l = \int_{a}^{b} \sqrt{1+(f'(x))^2} \,dx l = ∫ a b 1 + ( f ′ ( x ) ) 2 d x
where a, b are ends of the interval, f'(x) is derivative of our function.
So let's find f'(x):
f'(x) = 4/3*3/2*x1/2 = 2*x1/2 =2 ∗ x 2*\sqrt{x} 2 ∗ x
And find our integral:
l = ∫ 2 6 1 + ( 2 ∗ x ) 2 d x = ∫ 2 6 1 + 4 x d x = l = \int_{2}^{6} \sqrt{1+(2*\sqrt{x} )^2} \,dx = \int_{2}^{6} \sqrt{1+4x} \,dx= l = ∫ 2 6 1 + ( 2 ∗ x ) 2 d x = ∫ 2 6 1 + 4 x d x =
= 1 / 4 ∗ 2 / 3 ∗ ( 1 + 4 x ) 3 / 2 ∣ 2 6 = 1 / 6 ∗ ( 1 + 4 x ) 3 / 2 ∣ 2 6 = = 1/4*2/3*(1+4x)^{3/2} |_{2}^{6}= 1/6*(1+4x)^{3/2} |_{2}^{6} = = 1/4 ∗ 2/3 ∗ ( 1 + 4 x ) 3/2 ∣ 2 6 = 1/6 ∗ ( 1 + 4 x ) 3/2 ∣ 2 6 =
= 1 / 6 ∗ ( 2 5 3 / 2 − 9 3 / 2 ) = 1 / 6 ∗ ( 125 − 27 ) = 98 / 6 = 49 / 3 = 1/6*(25^{3/2}-9^{3/2})=1/6*(125-27)= 98/6 = 49/3 = 1/6 ∗ ( 2 5 3/2 − 9 3/2 ) = 1/6 ∗ ( 125 − 27 ) = 98/6 = 49/3
Finally, we have our answer: 49/3 is arc length of f(x) over [2;6], where f(x) =4/3*x3/2
Comments