find the surface area of the object obtained by rotating y=4+3x^2, 1<=x<=2
Surface area obtained by rotating the curve about y axis
will be
S=∫122πx(1+(y1)2)dx\int_{1}^{2}2\pi x\sqrt{(1+(y_1)^2)}dx∫122πx(1+(y1)2)dx [ where the y1y_1y1 is the differentiation with respect to x]
⟹ ∫122πx(1+(6x)2)dx ⟹ π36∫1272x(1+(6x)2)dx ⟹ π36∫36144(1+z)dz ⟹ π3623(1+z)32∣36144 ⟹ π54[14532−3732]\implies\int_1^22\pi x\sqrt{(1+(6x)^2)}dx\\\implies\frac{\pi}{36}\int_1^272 x\sqrt{(1+(6x)^2)}dx\\\implies\frac{\pi}{36}\int_{36}^{144}\sqrt{(1+z)}dz\\\implies\frac{\pi}{36}\frac{2}{3}(1+z)^\frac{3}{2}|_{36}^{144}\\\implies\frac{\pi}{54}[145^\frac{3}{2}-37^\frac{3}{2}]⟹∫122πx(1+(6x)2)dx⟹36π∫1272x(1+(6x)2)dx⟹36π∫36144(1+z)dz⟹36π32(1+z)23∣36144⟹54π[14523−3723] [Here we take Z=36x2]
So area of the given curve is π54[14532−3732]\frac{\pi}{54}[145^\frac{3}{2}-37^\frac{3}{2}]54π[14523−3723]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments