Surface area obtained by rotating the curve about y axis
will be
S=∫ 1 2 2 π x ( 1 + ( y 1 ) 2 ) d x \int_{1}^{2}2\pi x\sqrt{(1+(y_1)^2)}dx ∫ 1 2 2 π x ( 1 + ( y 1 ) 2 ) d x [ where the y 1 y_1 y 1 is the differentiation with respect to x]
⟹ ∫ 1 2 2 π x ( 1 + ( 6 x ) 2 ) d x ⟹ π 36 ∫ 1 2 72 x ( 1 + ( 6 x ) 2 ) d x ⟹ π 36 ∫ 36 144 ( 1 + z ) d z ⟹ π 36 2 3 ( 1 + z ) 3 2 ∣ 36 144 ⟹ π 54 [ 14 5 3 2 − 3 7 3 2 ] \implies\int_1^22\pi x\sqrt{(1+(6x)^2)}dx\\\implies\frac{\pi}{36}\int_1^272 x\sqrt{(1+(6x)^2)}dx\\\implies\frac{\pi}{36}\int_{36}^{144}\sqrt{(1+z)}dz\\\implies\frac{\pi}{36}\frac{2}{3}(1+z)^\frac{3}{2}|_{36}^{144}\\\implies\frac{\pi}{54}[145^\frac{3}{2}-37^\frac{3}{2}] ⟹ ∫ 1 2 2 π x ( 1 + ( 6 x ) 2 ) d x ⟹ 36 π ∫ 1 2 72 x ( 1 + ( 6 x ) 2 ) d x ⟹ 36 π ∫ 36 144 ( 1 + z ) d z ⟹ 36 π 3 2 ( 1 + z ) 2 3 ∣ 36 144 ⟹ 54 π [ 14 5 2 3 − 3 7 2 3 ] [Here we take Z=36x2 ]
So area of the given curve is π 54 [ 14 5 3 2 − 3 7 3 2 ] \frac{\pi}{54}[145^\frac{3}{2}-37^\frac{3}{2}] 54 π [ 14 5 2 3 − 3 7 2 3 ]
Comments