Answer to Question #154226 in Calculus for mafizur alam

Question #154226

find the surface area of the object obtained by rotating y=sin(2x), 0<=x<=pi/8 about the x axis


1
Expert's answer
2021-01-08T13:12:20-0500

Solution: The formula that well be using here is,Surface Area= S=2πyds  where ds=1+(dydx)2dx Here y=sin(2x), 0xπ8Solution: ~The ~formula ~that ~we’ll ~be ~using ~here ~is, \\Surface ~Area=~S= \int2\pi yds~~\\ where ~ds=\sqrt{1+ (\frac{dy}{dx})^2} dx~\\Here~y=sin(2x), ~0\leqslant x \leqslant \frac{\pi}{8}

dydx=2 cos(2x)ds=1+(dydx)2dx=1+[2 cos(2x)]2dx=1+4 cos2(2x)dx\therefore \frac{dy}{dx}=2~cos(2x)\\ \Rightarrow ds=\sqrt{1+ (\frac{dy}{dx})^2} dx=\sqrt{1+[2~cos(2x)]^2}dx=\sqrt{1+4~cos^2 (2x)}dx

Therefore the integral for the surface area is,S=2πyds.........................................[Substitute the values of y and ds] S=0π82π sin(2x) 1+4 cos2(2x)dx...................................................(1)Therefore ~ the~ integral ~ for~the~surface~area~is,\\S=\int2\pi yds.........................................[Substitute~the~values ~ of~ y ~and~ds ]\\ \therefore ~S=\int_{0}^{\frac{\pi}{8}}2\pi~ sin(2x)~\sqrt{1+4~cos^2 (2x)}dx...................................................(1)

Now we have to solve this integral.We use the following trigonometric substitutionsNow~we~have~ to~solve~this~integral.\\ We ~use ~the~ following~ trigonometric~ substitutions

cos(2x)=12tan(θ).....................................................................................(2)2 sin(2x)dx=12 sec2(θ)dθsin(2x)dx=14sec2(θ)dθ and1+4 cos2(2x)=1+tan2(θ)=sec2(θ)=sec θcos(2x)=\frac{1}{2}tan(\theta).....................................................................................(2) \\ \Rightarrow -2 ~sin(2x)dx=\frac{1}{2}~sec^2(\theta)d\theta \Rightarrow sin(2x)dx=-\frac{1}{4}sec^2(\theta)d\theta~and \\ \sqrt{1+4~cos^2 (2x)}=\sqrt{1+tan^2(\theta)}=\sqrt{sec^2(\theta)}=|sec~\theta|

Now we decide the Plus or minus sign (+ or ) of sec θ,we need to convert the x limits to θ limits Now~we~decide~the ~ Plus~or~minus~sign~(+~ or~-)~of~sec~\theta,\\we~need~to~convert~the~x~limits~to~\theta~limits~

Here we use the equation (2)Here ~we ~use~ the~ equation ~(2)

x=0:cos(0)=1=12 tan(θ)2=tan(θ)θ=tan1(2)=1.1071x=0: cos(0)=1=\frac{1}{2}~tan(\theta)\Rightarrow2=tan(\theta)\Rightarrow\theta=tan^{-1}(2)=1.1071

x=π8:cos(2(π8))=cos(π4)=12=12(22)=22=12 tan(θ) and 2=tan (θ) θ=tan1(2)=0.9553x=\frac{\pi}{8}: cos(2(\frac{\pi}{8}))=cos(\frac{\pi}{4})=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}(\frac{\sqrt{2}}{\sqrt{2}})=\frac{\sqrt{2}}{2} =\frac{1}{2}~tan(\theta)~and\\\Rightarrow ~\sqrt{2}=tan~(\theta) ~\\ \Rightarrow \theta=tan^{-1}(\sqrt{2})=0.9553

 The corresponding range of θ is 0.9553 θ  1.1071.This is in the first Quadrant and secant is positive there. Therefore,we use positive secant value.\therefore ~The~corresponding~range~of~\theta~is~0.9553\leqslant~\theta~\leqslant~1.1071.\\This~is~in~the~first~Quadrant ~and~secant~is~positive~there. ~\\Therefore, we~use~positive~secant~value.

Putting all the trigonometric substitutions in equation (1),Putting ~all ~the ~trigonometric~ substitutions ~ in~ equation~(1),

S=0π82π sin(2x) 1+4 cos2(2x)dxS=1.10710.95532π sin(2x) sec(θ)dx            [Since 1+4 cos2(2x)=sec(θ)]S=.10710.95532π [14sec2(θ)] sec(θ)dθ     [Since sin(2x)dx=14sec2(θ)dθ] S=1.10710.9553 [2π4sec2(θ)] sec(θ)dθS=\int_{0}^{\frac{\pi}{8}}2\pi~ sin(2x)~\sqrt{1+4~cos^2 (2x)}dx\\ \Rightarrow S=\int_{1.1071}^{0.9553}2\pi~ sin(2x)~sec(\theta)dx~~~~~~~~~~~~[Since~ \sqrt{1+4~cos^2 (2x)}=sec(\theta)] \\ \Rightarrow S=\int_{.1071}^{0.9553}2\pi~ [-\frac{1}{4}sec^2(\theta)]~sec(\theta)d\theta~~~~~[Since~ sin(2x)dx=-\frac{1}{4}sec^2(\theta)d\theta] \\ \\\ \Rightarrow S=\int_{1.1071}^{0.9553}~ [-\frac{2\pi}{4}sec^2(\theta)]~sec(\theta)d\theta

S=π21..10710.9553 sec3(θ)dθ\therefore S=-\frac{\pi}{2}\int_{1..1071}^{0.9553}~ sec^3(\theta)d\theta

Using the formula for the integral of sec3(θ),Using~the~formula~for~the~integral~of~sec^3(\theta),

\therefore S=-\frac{\pi}{4}[sec(\theta)~tan(\theta)+ln|sec(\theta)+tan(\theta)|] \Biggr|_{1.1071}^{0.9553} ~~~~~~ \\ [since~\int sec^3x=\frac{1}{2}(sec(x)~tan(x)+ln|sec(x)+tan(x)|]

Now,we just put upper and lower limits in above equation and solve,which givesNow, we~ just~put~ upper~and~lower~limits~in ~above ~equation ~and ~solve,which ~givesS=1.8215S=1.8215

The Surface area of the object is 1.8215.\therefore The ~Surface ~area ~of~ the~ object~ is~1.8215.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment