Solution: The formula that we’ll be using here is,Surface Area= S=∫2πyds where ds=1+(dxdy)2dx Here y=sin(2x), 0⩽x⩽8π
∴dxdy=2 cos(2x)⇒ds=1+(dxdy)2dx=1+[2 cos(2x)]2dx=1+4 cos2(2x)dx
Therefore the integral for the surface area is,S=∫2πyds.........................................[Substitute the values of y and ds]∴ S=∫08π2π sin(2x) 1+4 cos2(2x)dx...................................................(1)
Now we have to solve this integral.We use the following trigonometric substitutions
cos(2x)=21tan(θ).....................................................................................(2)⇒−2 sin(2x)dx=21 sec2(θ)dθ⇒sin(2x)dx=−41sec2(θ)dθ and1+4 cos2(2x)=1+tan2(θ)=sec2(θ)=∣sec θ∣
Now we decide the Plus or minus sign (+ or −) of sec θ,we need to convert the x limits to θ limits
Here we use the equation (2)
x=0:cos(0)=1=21 tan(θ)⇒2=tan(θ)⇒θ=tan−1(2)=1.1071
x=8π:cos(2(8π))=cos(4π)=21=21(22)=22=21 tan(θ) and⇒ 2=tan (θ) ⇒θ=tan−1(2)=0.9553
∴ The corresponding range of θ is 0.9553⩽ θ ⩽ 1.1071.This is in the first Quadrant and secant is positive there. Therefore,we use positive secant value.
Putting all the trigonometric substitutions in equation (1),
S=∫08π2π sin(2x) 1+4 cos2(2x)dx⇒S=∫1.10710.95532π sin(2x) sec(θ)dx [Since 1+4 cos2(2x)=sec(θ)]⇒S=∫.10710.95532π [−41sec2(θ)] sec(θ)dθ [Since sin(2x)dx=−41sec2(θ)dθ] ⇒S=∫1.10710.9553 [−42πsec2(θ)] sec(θ)dθ
∴S=−2π∫1..10710.9553 sec3(θ)dθ
Using the formula for the integral of sec3(θ),
\therefore S=-\frac{\pi}{4}[sec(\theta)~tan(\theta)+ln|sec(\theta)+tan(\theta)|] \Biggr|_{1.1071}^{0.9553} ~~~~~~
\\ [since~\int sec^3x=\frac{1}{2}(sec(x)~tan(x)+ln|sec(x)+tan(x)|]
Now,we just put upper and lower limits in above equation and solve,which givesS=1.8215
∴The Surface area of the object is 1.8215.
Comments
Leave a comment