S o l u t i o n : T h e f o r m u l a t h a t w e ’ l l b e u s i n g h e r e i s , S u r f a c e A r e a = S = ∫ 2 π y d s w h e r e d s = 1 + ( d y d x ) 2 d x H e r e y = s i n ( 2 x ) , 0 ⩽ x ⩽ π 8 Solution: ~The ~formula ~that ~we’ll ~be ~using ~here ~is, \\Surface ~Area=~S= \int2\pi yds~~\\ where ~ds=\sqrt{1+ (\frac{dy}{dx})^2} dx~\\Here~y=sin(2x), ~0\leqslant x \leqslant \frac{\pi}{8} S o l u t i o n : T h e f or m u l a t ha t w e ’ ll b e u s in g h ere i s , S u r f a ce A re a = S = ∫ 2 π y d s w h ere d s = 1 + ( d x d y ) 2 d x Here y = s in ( 2 x ) , 0 ⩽ x ⩽ 8 π
∴ d y d x = 2 c o s ( 2 x ) ⇒ d s = 1 + ( d y d x ) 2 d x = 1 + [ 2 c o s ( 2 x ) ] 2 d x = 1 + 4 c o s 2 ( 2 x ) d x \therefore \frac{dy}{dx}=2~cos(2x)\\ \Rightarrow ds=\sqrt{1+ (\frac{dy}{dx})^2} dx=\sqrt{1+[2~cos(2x)]^2}dx=\sqrt{1+4~cos^2 (2x)}dx ∴ d x d y = 2 cos ( 2 x ) ⇒ d s = 1 + ( d x d y ) 2 d x = 1 + [ 2 cos ( 2 x ) ] 2 d x = 1 + 4 co s 2 ( 2 x ) d x
T h e r e f o r e t h e i n t e g r a l f o r t h e s u r f a c e a r e a i s , S = ∫ 2 π y d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ S u b s t i t u t e t h e v a l u e s o f y a n d d s ] ∴ S = ∫ 0 π 8 2 π s i n ( 2 x ) 1 + 4 c o s 2 ( 2 x ) d x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 ) Therefore ~ the~ integral ~ for~the~surface~area~is,\\S=\int2\pi yds.........................................[Substitute~the~values ~ of~ y ~and~ds ]\\ \therefore ~S=\int_{0}^{\frac{\pi}{8}}2\pi~ sin(2x)~\sqrt{1+4~cos^2 (2x)}dx...................................................(1) T h ere f ore t h e in t e g r a l f or t h e s u r f a ce a re a i s , S = ∫ 2 π y d s ......................................... [ S u b s t i t u t e t h e v a l u es o f y an d d s ] ∴ S = ∫ 0 8 π 2 π s in ( 2 x ) 1 + 4 co s 2 ( 2 x ) d x ................................................... ( 1 )
N o w w e h a v e t o s o l v e t h i s i n t e g r a l . W e u s e t h e f o l l o w i n g t r i g o n o m e t r i c s u b s t i t u t i o n s Now~we~have~ to~solve~this~integral.\\ We ~use ~the~ following~ trigonometric~ substitutions N o w w e ha v e t o so l v e t hi s in t e g r a l . W e u se t h e f o ll o w in g t r i g o n o m e t r i c s u b s t i t u t i o n s
c o s ( 2 x ) = 1 2 t a n ( θ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) ⇒ − 2 s i n ( 2 x ) d x = 1 2 s e c 2 ( θ ) d θ ⇒ s i n ( 2 x ) d x = − 1 4 s e c 2 ( θ ) d θ a n d 1 + 4 c o s 2 ( 2 x ) = 1 + t a n 2 ( θ ) = s e c 2 ( θ ) = ∣ s e c θ ∣ cos(2x)=\frac{1}{2}tan(\theta).....................................................................................(2)
\\ \Rightarrow -2 ~sin(2x)dx=\frac{1}{2}~sec^2(\theta)d\theta \Rightarrow sin(2x)dx=-\frac{1}{4}sec^2(\theta)d\theta~and
\\ \sqrt{1+4~cos^2 (2x)}=\sqrt{1+tan^2(\theta)}=\sqrt{sec^2(\theta)}=|sec~\theta| cos ( 2 x ) = 2 1 t an ( θ ) ..................................................................................... ( 2 ) ⇒ − 2 s in ( 2 x ) d x = 2 1 se c 2 ( θ ) d θ ⇒ s in ( 2 x ) d x = − 4 1 se c 2 ( θ ) d θ an d 1 + 4 co s 2 ( 2 x ) = 1 + t a n 2 ( θ ) = se c 2 ( θ ) = ∣ sec θ ∣
N o w w e d e c i d e t h e P l u s o r m i n u s s i g n ( + o r − ) o f s e c θ , w e n e e d t o c o n v e r t t h e x l i m i t s t o θ l i m i t s Now~we~decide~the ~ Plus~or~minus~sign~(+~ or~-)~of~sec~\theta,\\we~need~to~convert~the~x~limits~to~\theta~limits~ N o w w e d ec i d e t h e Pl u s or min u s s i g n ( + or − ) o f sec θ , w e n ee d t o co n v er t t h e x l imi t s t o θ l imi t s
H e r e w e u s e t h e e q u a t i o n ( 2 ) Here ~we ~use~ the~ equation ~(2) Here w e u se t h e e q u a t i o n ( 2 )
x = 0 : c o s ( 0 ) = 1 = 1 2 t a n ( θ ) ⇒ 2 = t a n ( θ ) ⇒ θ = t a n − 1 ( 2 ) = 1.1071 x=0: cos(0)=1=\frac{1}{2}~tan(\theta)\Rightarrow2=tan(\theta)\Rightarrow\theta=tan^{-1}(2)=1.1071 x = 0 : cos ( 0 ) = 1 = 2 1 t an ( θ ) ⇒ 2 = t an ( θ ) ⇒ θ = t a n − 1 ( 2 ) = 1.1071
x = π 8 : c o s ( 2 ( π 8 ) ) = c o s ( π 4 ) = 1 2 = 1 2 ( 2 2 ) = 2 2 = 1 2 t a n ( θ ) a n d ⇒ 2 = t a n ( θ ) ⇒ θ = t a n − 1 ( 2 ) = 0.9553 x=\frac{\pi}{8}: cos(2(\frac{\pi}{8}))=cos(\frac{\pi}{4})=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}(\frac{\sqrt{2}}{\sqrt{2}})=\frac{\sqrt{2}}{2} =\frac{1}{2}~tan(\theta)~and\\\Rightarrow ~\sqrt{2}=tan~(\theta) ~\\ \Rightarrow \theta=tan^{-1}(\sqrt{2})=0.9553 x = 8 π : cos ( 2 ( 8 π )) = cos ( 4 π ) = 2 1 = 2 1 ( 2 2 ) = 2 2 = 2 1 t an ( θ ) an d ⇒ 2 = t an ( θ ) ⇒ θ = t a n − 1 ( 2 ) = 0.9553
∴ T h e c o r r e s p o n d i n g r a n g e o f θ i s 0.9553 ⩽ θ ⩽ 1.1071. T h i s i s i n t h e f i r s t Q u a d r a n t a n d s e c a n t i s p o s i t i v e t h e r e . T h e r e f o r e , w e u s e p o s i t i v e s e c a n t v a l u e . \therefore ~The~corresponding~range~of~\theta~is~0.9553\leqslant~\theta~\leqslant~1.1071.\\This~is~in~the~first~Quadrant ~and~secant~is~positive~there. ~\\Therefore, we~use~positive~secant~value. ∴ T h e corres p o n d in g r an g e o f θ i s 0.9553 ⩽ θ ⩽ 1.1071. T hi s i s in t h e f i rs t Q u a d r an t an d sec an t i s p os i t i v e t h ere . T h ere f ore , w e u se p os i t i v e sec an t v a l u e .
P u t t i n g a l l t h e t r i g o n o m e t r i c s u b s t i t u t i o n s i n e q u a t i o n ( 1 ) , Putting ~all ~the ~trigonometric~ substitutions ~ in~ equation~(1), P u tt in g a ll t h e t r i g o n o m e t r i c s u b s t i t u t i o n s in e q u a t i o n ( 1 ) ,
S = ∫ 0 π 8 2 π s i n ( 2 x ) 1 + 4 c o s 2 ( 2 x ) d x ⇒ S = ∫ 1.1071 0.9553 2 π s i n ( 2 x ) s e c ( θ ) d x [ S i n c e 1 + 4 c o s 2 ( 2 x ) = s e c ( θ ) ] ⇒ S = ∫ . 1071 0.9553 2 π [ − 1 4 s e c 2 ( θ ) ] s e c ( θ ) d θ [ S i n c e s i n ( 2 x ) d x = − 1 4 s e c 2 ( θ ) d θ ] ⇒ S = ∫ 1.1071 0.9553 [ − 2 π 4 s e c 2 ( θ ) ] s e c ( θ ) d θ S=\int_{0}^{\frac{\pi}{8}}2\pi~ sin(2x)~\sqrt{1+4~cos^2 (2x)}dx\\ \Rightarrow S=\int_{1.1071}^{0.9553}2\pi~ sin(2x)~sec(\theta)dx~~~~~~~~~~~~[Since~ \sqrt{1+4~cos^2 (2x)}=sec(\theta)]
\\ \Rightarrow S=\int_{.1071}^{0.9553}2\pi~ [-\frac{1}{4}sec^2(\theta)]~sec(\theta)d\theta~~~~~[Since~ sin(2x)dx=-\frac{1}{4}sec^2(\theta)d\theta]
\\ \\\ \Rightarrow S=\int_{1.1071}^{0.9553}~ [-\frac{2\pi}{4}sec^2(\theta)]~sec(\theta)d\theta S = ∫ 0 8 π 2 π s in ( 2 x ) 1 + 4 co s 2 ( 2 x ) d x ⇒ S = ∫ 1.1071 0.9553 2 π s in ( 2 x ) sec ( θ ) d x [ S in ce 1 + 4 co s 2 ( 2 x ) = sec ( θ )] ⇒ S = ∫ .1071 0.9553 2 π [ − 4 1 se c 2 ( θ )] sec ( θ ) d θ [ S in ce s in ( 2 x ) d x = − 4 1 se c 2 ( θ ) d θ ] ⇒ S = ∫ 1.1071 0.9553 [ − 4 2 π se c 2 ( θ )] sec ( θ ) d θ
∴ S = − π 2 ∫ 1..1071 0.9553 s e c 3 ( θ ) d θ \therefore S=-\frac{\pi}{2}\int_{1..1071}^{0.9553}~ sec^3(\theta)d\theta ∴ S = − 2 π ∫ 1..1071 0.9553 se c 3 ( θ ) d θ
U s i n g t h e f o r m u l a f o r t h e i n t e g r a l o f s e c 3 ( θ ) , Using~the~formula~for~the~integral~of~sec^3(\theta), U s in g t h e f or m u l a f or t h e in t e g r a l o f se c 3 ( θ ) ,
\therefore S=-\frac{\pi}{4}[sec(\theta)~tan(\theta)+ln|sec(\theta)+tan(\theta)|] \Biggr|_{1.1071}^{0.9553} ~~~~~~
\\ [since~\int sec^3x=\frac{1}{2}(sec(x)~tan(x)+ln|sec(x)+tan(x)|]
N o w , w e j u s t p u t u p p e r a n d l o w e r l i m i t s i n a b o v e e q u a t i o n a n d s o l v e , w h i c h g i v e s Now, we~ just~put~ upper~and~lower~limits~in ~above ~equation ~and ~solve,which ~gives N o w , w e j u s t p u t u pp er an d l o w er l imi t s in ab o v e e q u a t i o n an d so l v e , w hi c h g i v es S = 1.8215 S=1.8215 S = 1.8215
∴ T h e S u r f a c e a r e a o f t h e o b j e c t i s 1.8215. \therefore The ~Surface ~area ~of~ the~ object~ is~1.8215. ∴ T h e S u r f a ce a re a o f t h e o bj ec t i s 1.8215.
Comments