find the surface area of the object obtained by rotating y=sin(2x), 0<=x<=pi/8 about the x axis
"Solution: ~The ~formula ~that ~we\u2019ll ~be ~using ~here ~is, \\\\Surface ~Area=~S= \\int2\\pi yds~~\\\\ where ~ds=\\sqrt{1+ (\\frac{dy}{dx})^2} dx~\\\\Here~y=sin(2x), ~0\\leqslant x \\leqslant \\frac{\\pi}{8}"
"\\therefore \\frac{dy}{dx}=2~cos(2x)\\\\ \\Rightarrow ds=\\sqrt{1+ (\\frac{dy}{dx})^2} dx=\\sqrt{1+[2~cos(2x)]^2}dx=\\sqrt{1+4~cos^2 (2x)}dx"
"Therefore ~ the~ integral ~ for~the~surface~area~is,\\\\S=\\int2\\pi yds.........................................[Substitute~the~values ~ of~ y ~and~ds ]\\\\ \\therefore ~S=\\int_{0}^{\\frac{\\pi}{8}}2\\pi~ sin(2x)~\\sqrt{1+4~cos^2 (2x)}dx...................................................(1)"
"Now~we~have~ to~solve~this~integral.\\\\ We ~use ~the~ following~ trigonometric~ substitutions"
"cos(2x)=\\frac{1}{2}tan(\\theta).....................................................................................(2)\n\\\\ \\Rightarrow -2 ~sin(2x)dx=\\frac{1}{2}~sec^2(\\theta)d\\theta \\Rightarrow sin(2x)dx=-\\frac{1}{4}sec^2(\\theta)d\\theta~and\n\\\\ \\sqrt{1+4~cos^2 (2x)}=\\sqrt{1+tan^2(\\theta)}=\\sqrt{sec^2(\\theta)}=|sec~\\theta|"
"Now~we~decide~the ~ Plus~or~minus~sign~(+~ or~-)~of~sec~\\theta,\\\\we~need~to~convert~the~x~limits~to~\\theta~limits~"
"Here ~we ~use~ the~ equation ~(2)"
"x=0: cos(0)=1=\\frac{1}{2}~tan(\\theta)\\Rightarrow2=tan(\\theta)\\Rightarrow\\theta=tan^{-1}(2)=1.1071"
"x=\\frac{\\pi}{8}: cos(2(\\frac{\\pi}{8}))=cos(\\frac{\\pi}{4})=\\frac{1}{\\sqrt{2}}=\\frac{1}{\\sqrt{2}}(\\frac{\\sqrt{2}}{\\sqrt{2}})=\\frac{\\sqrt{2}}{2} =\\frac{1}{2}~tan(\\theta)~and\\\\\\Rightarrow ~\\sqrt{2}=tan~(\\theta) ~\\\\ \\Rightarrow \\theta=tan^{-1}(\\sqrt{2})=0.9553"
"\\therefore ~The~corresponding~range~of~\\theta~is~0.9553\\leqslant~\\theta~\\leqslant~1.1071.\\\\This~is~in~the~first~Quadrant ~and~secant~is~positive~there. ~\\\\Therefore, we~use~positive~secant~value."
"Putting ~all ~the ~trigonometric~ substitutions ~ in~ equation~(1),"
"S=\\int_{0}^{\\frac{\\pi}{8}}2\\pi~ sin(2x)~\\sqrt{1+4~cos^2 (2x)}dx\\\\ \\Rightarrow S=\\int_{1.1071}^{0.9553}2\\pi~ sin(2x)~sec(\\theta)dx~~~~~~~~~~~~[Since~ \\sqrt{1+4~cos^2 (2x)}=sec(\\theta)]\n\\\\ \\Rightarrow S=\\int_{.1071}^{0.9553}2\\pi~ [-\\frac{1}{4}sec^2(\\theta)]~sec(\\theta)d\\theta~~~~~[Since~ sin(2x)dx=-\\frac{1}{4}sec^2(\\theta)d\\theta]\n\\\\ \\\\\\ \\Rightarrow S=\\int_{1.1071}^{0.9553}~ [-\\frac{2\\pi}{4}sec^2(\\theta)]~sec(\\theta)d\\theta"
"\\therefore S=-\\frac{\\pi}{2}\\int_{1..1071}^{0.9553}~ sec^3(\\theta)d\\theta"
"Using~the~formula~for~the~integral~of~sec^3(\\theta),"
"\\therefore S=-\\frac{\\pi}{4}[sec(\\theta)~tan(\\theta)+ln|sec(\\theta)+tan(\\theta)|] \\Biggr|_{1.1071}^{0.9553} ~~~~~~\n\\\\ [since~\\int sec^3x=\\frac{1}{2}(sec(x)~tan(x)+ln|sec(x)+tan(x)|]"
"Now, we~ just~put~ upper~and~lower~limits~in ~above ~equation ~and ~solve,which ~gives""S=1.8215"
"\\therefore The ~Surface ~area ~of~ the~ object~ is~1.8215."
Comments
Leave a comment