x = 4(3 + y)2
⟹ \implies ⟹ dx /dy = 4 . 2(3 + y) = 24 + 8y
1+ (dx /dy)2 = 1 + (24 + 8y)2
arc length = ∫ \int ∫ 1 4 1 + ( d x / d y ) 2 \sqrt{1+ (dx /dy)^2} 1 + ( d x / d y ) 2 dy = ∫ \int ∫ 1 4 1 + ( 24 + 8 y ) 2 \sqrt{1+ (24+8y)^2} 1 + ( 24 + 8 y ) 2 dy
substituting u = 24 + 8y
⟹ \implies ⟹ du = 8dy , when y =1, u =32 and when y = 4 , u = 56
⟹ \implies ⟹ arc length = ∫ \int ∫ 4 56 1 + ( u ) 2 \sqrt{1+ (u)^2} 1 + ( u ) 2 du /8
= [(u1 + ( u ) 2 \sqrt{1+ (u)^2} 1 + ( u ) 2 + ln(u +1 + ( u ) 2 \sqrt{1+ (u)^2} 1 + ( u ) 2 )/16] 4 56
=[(561 + ( 56 ) 2 \sqrt{1+ (56)^2} 1 + ( 56 ) 2 + ln(56 +1 + ( 56 ) 2 \sqrt{1+ (56)^2} 1 + ( 56 ) 2 )/16]-[(321 + ( 32 ) 2 \sqrt{1+ (32)^2} 1 + ( 32 ) 2 + ln(32 +1 + ( 32 ) 2 \sqrt{1+ (32)^2} 1 + ( 32 ) 2 )/16]
=[(563137 \sqrt{3137} 3137 + ln(56 +3137 \sqrt{3137} 3137 )/16]-[(321025 \sqrt{1025} 1025 + ln(32 +1025 \sqrt{1025} 1025 )/16]
=132.0349
Comments