determine the length of x=4(3+y)^2, 1<=y<=4
x = 4(3 + y)2
⟹ \implies⟹ dx /dy = 4 . 2(3 + y) = 24 + 8y
1+ (dx /dy)2 = 1 + (24 + 8y)2
arc length = ∫\int∫14 1+(dx/dy)2\sqrt{1+ (dx /dy)^2}1+(dx/dy)2 dy = ∫\int∫14 1+(24+8y)2\sqrt{1+ (24+8y)^2}1+(24+8y)2 dy
substituting u = 24 + 8y
⟹ \implies⟹ du = 8dy , when y =1, u =32 and when y = 4 , u = 56
⟹ \implies⟹ arc length = ∫\int∫456 1+(u)2\sqrt{1+ (u)^2}1+(u)2 du /8
= [(u1+(u)2\sqrt{1+ (u)^2}1+(u)2 + ln(u +1+(u)2\sqrt{1+ (u)^2}1+(u)2)/16] 456
=[(561+(56)2\sqrt{1+ (56)^2}1+(56)2 + ln(56 +1+(56)2\sqrt{1+ (56)^2}1+(56)2)/16]-[(321+(32)2\sqrt{1+ (32)^2}1+(32)2 + ln(32 +1+(32)2\sqrt{1+ (32)^2}1+(32)2)/16]
=[(563137\sqrt{3137}3137 + ln(56 +3137\sqrt{3137}3137)/16]-[(321025\sqrt{1025}1025 + ln(32 +1025\sqrt{1025}1025)/16]
=132.0349
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments