determine the length of x=4(3+y)^2, 1<=y<=4
x = 4(3 + y)2
"\\implies" dx /dy = 4 . 2(3 + y) = 24 + 8y
1+ (dx /dy)2 = 1 + (24 + 8y)2
arc length = "\\int"14 "\\sqrt{1+ (dx \/dy)^2}" dy = "\\int"14 "\\sqrt{1+ (24+8y)^2}" dy
substituting u = 24 + 8y
"\\implies" du = 8dy , when y =1, u =32 and when y = 4 , u = 56
"\\implies" arc length = "\\int"456 "\\sqrt{1+ (u)^2}" du /8
= [(u"\\sqrt{1+ (u)^2}" + ln(u +"\\sqrt{1+ (u)^2}")/16] 456
=[(56"\\sqrt{1+ (56)^2}" + ln(56 +"\\sqrt{1+ (56)^2}")/16]-[(32"\\sqrt{1+ (32)^2}" + ln(32 +"\\sqrt{1+ (32)^2}")/16]
=[(56"\\sqrt{3137}" + ln(56 +"\\sqrt{3137}")/16]-[(32"\\sqrt{1025}" + ln(32 +"\\sqrt{1025}")/16]
=132.0349
Comments
Leave a comment