Find the Tangent and Normal line to the given curve. y=√(16+x^2) at the origin
Solution
dydx=1216+x2(2x)=x16+x2dydx(0,4)=0\qquad\qquad\,\,\,\,\,\,\frac{dy}{dx}=\frac{1}{2\sqrt{16+x^2}}(2x)=\frac{x}{\sqrt{16+x^2}}\\ \qquad\qquad\frac{dy}{dx}_{(0,4)}=0dxdy=216+x21(2x)=16+x2xdxdy(0,4)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments