"\\int" Cosec6(2x) dx
Let
"I=\\int cosec^6(2x)dx"
Let "y=2x\\Rightarrow dy=2dx"
Now "I=\\int cosec^6(2x)dx=\\frac{1}{2}\\int cosec^6(y)dy"
"\\therefore 2I\\\\= \\int cosec^6ydy\\\\\n=\\int cosec^4y\\times cosec^2ydy\\\\\n=\\int cosec^4y\\times(1+cot^2y)dy\\\\\n=\\int (cosec^4y)dy+\\int cosec^4y\\times cot^2ydy\\\\\n=\\int (cosec^2y\\times(1+ cot^2y))dy+\\int cosec^2y\\times cot^2y\\times (1+cot^2y)dy\\\\\n=\\int cosec^2ydy+\\int cosec^2ycot^2ydy+\\int cosec^2ycot^2ydy+\\int cot^4ycosec^2ydy\\\\"
Let
"coty=z\\\\\\Rightarrow -cosec^2ydy=dz\\\\\\Rightarrow cosec^2ydy=-dz"
Now replacing "coty \\;by\\; z\\;and \\;cosec^2ydy\\;by \\;(-dz),"
"2I\\\\\n=-\\int dz-2\\int z^2dz-\\int z^4dz\\\\\n=-z- \\frac{2z^3}{3}-\\frac{z^5}{5}+c'"
[ c' is the integrating constant ]
"=-cot(2x)-\\frac{2}{3}cot^3(2x)-\\frac{1}{5}cot^5(2x)+c'"
[ putting "z=coty" and, "y=2x" ]
"\\Rightarrow I=-\\frac{1}{2}cot(2x)-\\frac{2}{6}cot^3(2x)-\\frac{1}{10}cot^5(2x)+c"
[ "c=c'\/2]"
So,
where "c" is a Integrating Constant.
Comments
Leave a comment