Let
I=∫cosec6(2x)dx
Let y=2x⇒dy=2dx
Now I=∫cosec6(2x)dx=21∫cosec6(y)dy
∴2I=∫cosec6ydy=∫cosec4y×cosec2ydy=∫cosec4y×(1+cot2y)dy=∫(cosec4y)dy+∫cosec4y×cot2ydy=∫(cosec2y×(1+cot2y))dy+∫cosec2y×cot2y×(1+cot2y)dy=∫cosec2ydy+∫cosec2ycot2ydy+∫cosec2ycot2ydy+∫cot4ycosec2ydy
Let
coty=z⇒−cosec2ydy=dz⇒cosec2ydy=−dz
Now replacing cotybyzandcosec2ydyby(−dz),
2I=−∫dz−2∫z2dz−∫z4dz=−z−32z3−5z5+c′
[ c' is the integrating constant ]
=−cot(2x)−32cot3(2x)−51cot5(2x)+c′
[ putting z=coty and, y=2x ]
⇒I=−21cot(2x)−62cot3(2x)−101cot5(2x)+c
[ c=c′/2]
So,
I=∫cosec6(2x)=−21cot(2x)−62cot3(2x)−101cot5(2x)+cwhere c is a Integrating Constant.
Comments