Question #153390

\int Cosec6(2x) dx


1
Expert's answer
2021-01-01T12:42:05-0500

Let

I=cosec6(2x)dxI=\int cosec^6(2x)dx

Let y=2xdy=2dxy=2x\Rightarrow dy=2dx


Now I=cosec6(2x)dx=12cosec6(y)dyI=\int cosec^6(2x)dx=\frac{1}{2}\int cosec^6(y)dy

2I=cosec6ydy=cosec4y×cosec2ydy=cosec4y×(1+cot2y)dy=(cosec4y)dy+cosec4y×cot2ydy=(cosec2y×(1+cot2y))dy+cosec2y×cot2y×(1+cot2y)dy=cosec2ydy+cosec2ycot2ydy+cosec2ycot2ydy+cot4ycosec2ydy\therefore 2I\\= \int cosec^6ydy\\ =\int cosec^4y\times cosec^2ydy\\ =\int cosec^4y\times(1+cot^2y)dy\\ =\int (cosec^4y)dy+\int cosec^4y\times cot^2ydy\\ =\int (cosec^2y\times(1+ cot^2y))dy+\int cosec^2y\times cot^2y\times (1+cot^2y)dy\\ =\int cosec^2ydy+\int cosec^2ycot^2ydy+\int cosec^2ycot^2ydy+\int cot^4ycosec^2ydy\\

Let

coty=zcosec2ydy=dzcosec2ydy=dzcoty=z\\\Rightarrow -cosec^2ydy=dz\\\Rightarrow cosec^2ydy=-dz


Now replacing coty  by  z  and  cosec2ydy  by  (dz),coty \;by\; z\;and \;cosec^2ydy\;by \;(-dz),

2I=dz2z2dzz4dz=z2z33z55+c2I\\ =-\int dz-2\int z^2dz-\int z^4dz\\ =-z- \frac{2z^3}{3}-\frac{z^5}{5}+c'

[ c' is the integrating constant ]

=cot(2x)23cot3(2x)15cot5(2x)+c=-cot(2x)-\frac{2}{3}cot^3(2x)-\frac{1}{5}cot^5(2x)+c'

[ putting z=cotyz=coty and, y=2xy=2x ]

I=12cot(2x)26cot3(2x)110cot5(2x)+c\Rightarrow I=-\frac{1}{2}cot(2x)-\frac{2}{6}cot^3(2x)-\frac{1}{10}cot^5(2x)+c

c=c/2]c=c'/2]


So,


I=cosec6(2x)=12cot(2x)26cot3(2x)110cot5(2x)+c\boxed{I=\int cosec^6(2x)=-\frac{1}{2}cot(2x)-\frac{2}{6}cot^3(2x)-\frac{1}{10}cot^5(2x)+c}

where cc is a Integrating Constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS