"v(t)=A(1- e^{-t\/t_{maxspeed} } )\\\\"
If "\\pmb{t\\rightarrow \\infty, v(t)\\rightarrow A}"
As, "\\lim_{t \\rightarrow \\infty} v(t)=\\lim_{t \\rightarrow \\infty} A(1-e^{-t\/t_{maxspeed}})"
"=A-\\lim_{t \\rightarrow \\infty} e^{-t\/t_{maxspeed}}=A-0=A"
For "t=0, v(t)=A-A=0"
"\\therefore" It starts with zero velocity.
Now, acceleration "a(t)=\\frac{dv(t)}{dt}=\\frac{A}{t_{maxspeed}}e^{-t\/t_{maxspeed} }"
If "\\pmb{t\\rightarrow \\infty, a(t)\\rightarrow 0}"
As, "\\lim_{t\\rightarrow \\infty}a(t)=\\lim_{t\\rightarrow \\infty}\\frac{A}{t_{maxspeed}}e^{-t\/t_{maxspeed} }"
"=\\frac{A}{t_{maxspeed}}\\times0=0"
Now distance travelled at a time "t,"
"d(t)=\\int_{0}^{t}v(t)dt=\\int_{0}^{t}A(1- e^{-t\/t_{maxspeed} } )dt"
"=At+At_{maxspeed}[e^{-t\/t_{maxspeed}}-1]"
Comments
Leave a comment