Answer to Question #152947 in Calculus for Aysha Siddika

Question #152947
The equation is:
v(t)=A(1- e^(-t/t_maxspeed ) )
The tasks are to:
● Use thinking methods to analyse the given engineering problem, e.g. break the problem down into a series of manageable elements, and produce a specification
1
Expert's answer
2020-12-29T17:54:26-0500

v(t)=A(1et/tmaxspeed)v(t)=A(1- e^{-t/t_{maxspeed} } )\\


If t,v(t)A\pmb{t\rightarrow \infty, v(t)\rightarrow A}

As, limtv(t)=limtA(1et/tmaxspeed)\lim_{t \rightarrow \infty} v(t)=\lim_{t \rightarrow \infty} A(1-e^{-t/t_{maxspeed}})

=Alimtet/tmaxspeed=A0=A=A-\lim_{t \rightarrow \infty} e^{-t/t_{maxspeed}}=A-0=A


For t=0,v(t)=AA=0t=0, v(t)=A-A=0

\therefore It starts with zero velocity.


Now, acceleration a(t)=dv(t)dt=Atmaxspeedet/tmaxspeeda(t)=\frac{dv(t)}{dt}=\frac{A}{t_{maxspeed}}e^{-t/t_{maxspeed} }


If t,a(t)0\pmb{t\rightarrow \infty, a(t)\rightarrow 0}

As, limta(t)=limtAtmaxspeedet/tmaxspeed\lim_{t\rightarrow \infty}a(t)=\lim_{t\rightarrow \infty}\frac{A}{t_{maxspeed}}e^{-t/t_{maxspeed} }

=Atmaxspeed×0=0=\frac{A}{t_{maxspeed}}\times0=0


Now distance travelled at a time t,t,

d(t)=0tv(t)dt=0tA(1et/tmaxspeed)dtd(t)=\int_{0}^{t}v(t)dt=\int_{0}^{t}A(1- e^{-t/t_{maxspeed} } )dt

=At+Atmaxspeed[et/tmaxspeed1]=At+At_{maxspeed}[e^{-t/t_{maxspeed}}-1]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment