Solution :-
"I= \\frac{V}{R}(1-e^{-\\frac{Rt}{L}})"
(a)
"L" is the only independent variable here.
"\\lim_{L \\to 0}I=\\lim_{L \\to 0}\\frac{V}{R}(1-e^{-\\frac{Rt}{L}})"
As, "L \\to 0 \\Rightarrow \\frac{1}{L}\\to \\infin \\Rightarrow e^{-\\frac{Rt}{L}} \\to 0"
"\\therefore \\lim_{L \\to 0}I=\\lim_{L \\to 0}\\frac{V}{R}(1-e^{-\\frac{Rt}{L}})"
"= \\lim_{L \\to 0}\\frac{V}{R}(1-0)=\\frac{V}{R}"
So, "\\lim_{L \\to 0}I =\\frac{V}{R}"
(b)
"R" is the only independent variable here.
"\\lim_{R \\to 0}I=\\lim_{R \\to 0}\\frac{V}{R}(1-e^{-\\frac{Rt}{L}})"
"= \\lim_{R \\to 0} \\frac{V(0-(-t\/L)e^{-\\frac{Rt}{L}})}{1}" [ Using L'Hospital ]
"= \\lim_{R \\to 0} \\frac{Vte^{-\\frac{Rt}{L}}}{L}=\\frac{Vt}{L}"
So, "\\lim_{R \\to 0}I=\\frac{Vt}{L}"
Comments
Leave a comment