a) Given that ln(sin−1(ex))+yx2=1 ............(1)
Differentiating both side of (1) with respect to x, we get
dxd[ln(sin−1(ex))]+dxd[yx2]=dxd(1)
⟹sin−1(ex)1.dxd[sin−1(ex)]+y.dxd(x2)+x2.dxd(y)=0
⟹sin−1(ex)1.1−(ex)21.dxd(ex)+y.(2x)+x2.dxdy=0
⟹sin−1(ex)1.1−(ex)21.(ex)+2xy+x2.dxdy=0
⟹x2.dxdy=−[sin−1(ex)1.1−(ex)21.(ex)+2xy]
⟹dxdy=−[x21.sin−1(ex)1.1−(ex)21.(ex)+x22xy]
⟹dxdy=−[x21.sin−1(ex)1.1−(ex)21.(ex)+2(xy)]
b) Given that tan−1(x+y)−sin−1(ey+x)=4 ..........(1)
Differentiating both side of (1) with respect to x, we get
dxd[tan−1(x+y)]−dxd[sin−1(ey+x)]=dxd(4)
⟹[1+(x+y)2]1.dxd(x+y)−1−(ey+x)21.dxd(ey+x)=0
⟹[1+(x+y)2]1.(1+dxdy)−1−(ey+x)21.(1+eydxdy)=0
⟹[[1+(x+y)2]1−1−(ey+x)2ey].dxdy+[[1+(x+y)2]1−1−(ey+x)21]=0
⟹[1−(ey+x)2−ey[1+(x+y)2]].dxdy+[1−(ey+x)2−[1+(x+y)2]]=0
⟹dxdy=−[1−(ey+x)2−ey.[1+(x+y)2]][1−(ey+x)2−[1+(x+y)2]]
Comments
Leave a comment