a) Given that "ln(sin^{-1}(e^x))+yx^2=1" ............(1)
Differentiating both side of (1) with respect to "x," we get
"\\frac{d}{dx}[ln(sin^{-1}(e^x))]+\\frac{d}{dx}[yx^2]=\\frac{d}{dx}(1)"
"\\implies \\frac{1}{sin^{-1}(e^x)}.\\frac{d}{dx}[sin^{-1}(e^x)]+y.\\frac{d}{dx}(x^2)+x^2.\\frac{d}{dx}(y)=0"
"\\implies \\frac{1}{sin^{-1}(e^x)}.\\frac{1}{\\sqrt{1-(e^x)^2}}.\\frac {d}{dx}(e^x)+y.(2x)+x^2.\\frac{dy}{dx}=0"
"\\implies \\frac{1}{sin^{-1}(e^x)}.\\frac{1}{\\sqrt{1-(e^x)^2}}.(e^x)+2xy+x^2.\\frac{dy}{dx}=0"
"\\implies x^2.\\frac{dy}{dx}=-[ \\frac{1}{sin^{-1}(e^x)}.\\frac{1}{\\sqrt{1-(e^x)^2}}.(e^x)+2xy]"
"\\implies \\frac{dy}{dx}=-[ \\frac{1}{x^2}.\\frac{1}{sin^{-1}(e^x)}.\\frac{1}{\\sqrt{1-(e^x)^2}}.(e^x)+\\frac{2xy}{x^2}]"
"\\implies \\frac{dy}{dx}=-[ \\frac{1}{x^2}.\\frac{1}{sin^{-1}(e^x)}.\\frac{1}{\\sqrt{1-(e^x)^2}}.(e^x)+2(\\frac{y}{x})]"
b) Given that "tan^{-1}(x+y)-sin^{-1}(e^y+x)=4" ..........(1)
Differentiating both side of (1) with respect to "x," we get
"\\frac{d}{dx}[tan^{-1}(x+y)]-\\frac{d}{dx}[sin^{-1}(e^y+x)]=\\frac{d}{dx}(4)"
"\\implies \\frac {1}{[1+(x+y)^2]}.\\frac{d}{dx}(x+y)-\\frac{1}{\\sqrt{1-(e^y+x)^2}}.\\frac{d}{dx}(e^y+x)=0"
"\\implies \\frac {1}{[1+(x+y)^2]}.(1+\\frac{dy}{dx})-\\frac{1}{\\sqrt{1-(e^y+x)^2}}.(1+e^y\\frac{dy}{dx})=0"
"\\implies [\\frac {1}{[1+(x+y)^2]}-\\frac{e^y}{\\sqrt{1-(e^y+x)^2}}].\\frac{dy}{dx}+[\\frac {1}{[1+(x+y)^2]}-\\frac{1}{\\sqrt{1-(e^y+x)^2}}]=0"
"\\implies [\\sqrt{1-(e^y+x)^2} -e^y[1+(x+y)^2]].\\frac{dy}{dx}+[\\sqrt{1-(e^y+x)^2} -[1+(x+y)^2]]=0"
"\\implies \\frac{dy}{dx}=-\\frac{[\\sqrt{1-(e^y+x)^2} -[1+(x+y)^2]]}{[\\sqrt{1-(e^y+x)^2} -e^y.[1+(x+y)^2]]}"
Comments
Leave a comment