a) Given that l n ( s i n − 1 ( e x ) ) + y x 2 = 1 ln(sin^{-1}(e^x))+yx^2=1 l n ( s i n − 1 ( e x )) + y x 2 = 1 ............(1)
Differentiating both side of (1) with respect to x , x, x , we get
d d x [ l n ( s i n − 1 ( e x ) ) ] + d d x [ y x 2 ] = d d x ( 1 ) \frac{d}{dx}[ln(sin^{-1}(e^x))]+\frac{d}{dx}[yx^2]=\frac{d}{dx}(1) d x d [ l n ( s i n − 1 ( e x ))] + d x d [ y x 2 ] = d x d ( 1 )
⟹ 1 s i n − 1 ( e x ) . d d x [ s i n − 1 ( e x ) ] + y . d d x ( x 2 ) + x 2 . d d x ( y ) = 0 \implies \frac{1}{sin^{-1}(e^x)}.\frac{d}{dx}[sin^{-1}(e^x)]+y.\frac{d}{dx}(x^2)+x^2.\frac{d}{dx}(y)=0 ⟹ s i n − 1 ( e x ) 1 . d x d [ s i n − 1 ( e x )] + y . d x d ( x 2 ) + x 2 . d x d ( y ) = 0
⟹ 1 s i n − 1 ( e x ) . 1 1 − ( e x ) 2 . d d x ( e x ) + y . ( 2 x ) + x 2 . d y d x = 0 \implies \frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.\frac {d}{dx}(e^x)+y.(2x)+x^2.\frac{dy}{dx}=0 ⟹ s i n − 1 ( e x ) 1 . 1 − ( e x ) 2 1 . d x d ( e x ) + y . ( 2 x ) + x 2 . d x d y = 0
⟹ 1 s i n − 1 ( e x ) . 1 1 − ( e x ) 2 . ( e x ) + 2 x y + x 2 . d y d x = 0 \implies \frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+2xy+x^2.\frac{dy}{dx}=0 ⟹ s i n − 1 ( e x ) 1 . 1 − ( e x ) 2 1 . ( e x ) + 2 x y + x 2 . d x d y = 0
⟹ x 2 . d y d x = − [ 1 s i n − 1 ( e x ) . 1 1 − ( e x ) 2 . ( e x ) + 2 x y ] \implies x^2.\frac{dy}{dx}=-[ \frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+2xy] ⟹ x 2 . d x d y = − [ s i n − 1 ( e x ) 1 . 1 − ( e x ) 2 1 . ( e x ) + 2 x y ]
⟹ d y d x = − [ 1 x 2 . 1 s i n − 1 ( e x ) . 1 1 − ( e x ) 2 . ( e x ) + 2 x y x 2 ] \implies \frac{dy}{dx}=-[ \frac{1}{x^2}.\frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+\frac{2xy}{x^2}] ⟹ d x d y = − [ x 2 1 . s i n − 1 ( e x ) 1 . 1 − ( e x ) 2 1 . ( e x ) + x 2 2 x y ]
⟹ d y d x = − [ 1 x 2 . 1 s i n − 1 ( e x ) . 1 1 − ( e x ) 2 . ( e x ) + 2 ( y x ) ] \implies \frac{dy}{dx}=-[ \frac{1}{x^2}.\frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+2(\frac{y}{x})] ⟹ d x d y = − [ x 2 1 . s i n − 1 ( e x ) 1 . 1 − ( e x ) 2 1 . ( e x ) + 2 ( x y )]
b) Given that t a n − 1 ( x + y ) − s i n − 1 ( e y + x ) = 4 tan^{-1}(x+y)-sin^{-1}(e^y+x)=4 t a n − 1 ( x + y ) − s i n − 1 ( e y + x ) = 4 ..........(1)
Differentiating both side of (1) with respect to x , x, x , we get
d d x [ t a n − 1 ( x + y ) ] − d d x [ s i n − 1 ( e y + x ) ] = d d x ( 4 ) \frac{d}{dx}[tan^{-1}(x+y)]-\frac{d}{dx}[sin^{-1}(e^y+x)]=\frac{d}{dx}(4) d x d [ t a n − 1 ( x + y )] − d x d [ s i n − 1 ( e y + x )] = d x d ( 4 )
⟹ 1 [ 1 + ( x + y ) 2 ] . d d x ( x + y ) − 1 1 − ( e y + x ) 2 . d d x ( e y + x ) = 0 \implies \frac {1}{[1+(x+y)^2]}.\frac{d}{dx}(x+y)-\frac{1}{\sqrt{1-(e^y+x)^2}}.\frac{d}{dx}(e^y+x)=0 ⟹ [ 1 + ( x + y ) 2 ] 1 . d x d ( x + y ) − 1 − ( e y + x ) 2 1 . d x d ( e y + x ) = 0
⟹ 1 [ 1 + ( x + y ) 2 ] . ( 1 + d y d x ) − 1 1 − ( e y + x ) 2 . ( 1 + e y d y d x ) = 0 \implies \frac {1}{[1+(x+y)^2]}.(1+\frac{dy}{dx})-\frac{1}{\sqrt{1-(e^y+x)^2}}.(1+e^y\frac{dy}{dx})=0 ⟹ [ 1 + ( x + y ) 2 ] 1 . ( 1 + d x d y ) − 1 − ( e y + x ) 2 1 . ( 1 + e y d x d y ) = 0
⟹ [ 1 [ 1 + ( x + y ) 2 ] − e y 1 − ( e y + x ) 2 ] . d y d x + [ 1 [ 1 + ( x + y ) 2 ] − 1 1 − ( e y + x ) 2 ] = 0 \implies [\frac {1}{[1+(x+y)^2]}-\frac{e^y}{\sqrt{1-(e^y+x)^2}}].\frac{dy}{dx}+[\frac {1}{[1+(x+y)^2]}-\frac{1}{\sqrt{1-(e^y+x)^2}}]=0 ⟹ [ [ 1 + ( x + y ) 2 ] 1 − 1 − ( e y + x ) 2 e y ] . d x d y + [ [ 1 + ( x + y ) 2 ] 1 − 1 − ( e y + x ) 2 1 ] = 0
⟹ [ 1 − ( e y + x ) 2 − e y [ 1 + ( x + y ) 2 ] ] . d y d x + [ 1 − ( e y + x ) 2 − [ 1 + ( x + y ) 2 ] ] = 0 \implies [\sqrt{1-(e^y+x)^2} -e^y[1+(x+y)^2]].\frac{dy}{dx}+[\sqrt{1-(e^y+x)^2} -[1+(x+y)^2]]=0 ⟹ [ 1 − ( e y + x ) 2 − e y [ 1 + ( x + y ) 2 ]] . d x d y + [ 1 − ( e y + x ) 2 − [ 1 + ( x + y ) 2 ]] = 0
⟹ d y d x = − [ 1 − ( e y + x ) 2 − [ 1 + ( x + y ) 2 ] ] [ 1 − ( e y + x ) 2 − e y . [ 1 + ( x + y ) 2 ] ] \implies \frac{dy}{dx}=-\frac{[\sqrt{1-(e^y+x)^2} -[1+(x+y)^2]]}{[\sqrt{1-(e^y+x)^2} -e^y.[1+(x+y)^2]]} ⟹ d x d y = − [ 1 − ( e y + x ) 2 − e y . [ 1 + ( x + y ) 2 ]] [ 1 − ( e y + x ) 2 − [ 1 + ( x + y ) 2 ]]
Comments