Answer to Question #152848 in Calculus for zeeshan wahab

Question #152848
apply implicit differentation to determine dy/dx
a) In(sin^-1(e^x)+yx^2=1
b) tan^-1(x+y)-sin^-1(e^y+x)=4
1
Expert's answer
2020-12-30T04:43:47-0500

a) Given that ln(sin1(ex))+yx2=1ln(sin^{-1}(e^x))+yx^2=1 ............(1)

Differentiating both side of (1) with respect to x,x, we get

ddx[ln(sin1(ex))]+ddx[yx2]=ddx(1)\frac{d}{dx}[ln(sin^{-1}(e^x))]+\frac{d}{dx}[yx^2]=\frac{d}{dx}(1)

    1sin1(ex).ddx[sin1(ex)]+y.ddx(x2)+x2.ddx(y)=0\implies \frac{1}{sin^{-1}(e^x)}.\frac{d}{dx}[sin^{-1}(e^x)]+y.\frac{d}{dx}(x^2)+x^2.\frac{d}{dx}(y)=0

    1sin1(ex).11(ex)2.ddx(ex)+y.(2x)+x2.dydx=0\implies \frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.\frac {d}{dx}(e^x)+y.(2x)+x^2.\frac{dy}{dx}=0

    1sin1(ex).11(ex)2.(ex)+2xy+x2.dydx=0\implies \frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+2xy+x^2.\frac{dy}{dx}=0

    x2.dydx=[1sin1(ex).11(ex)2.(ex)+2xy]\implies x^2.\frac{dy}{dx}=-[ \frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+2xy]

    dydx=[1x2.1sin1(ex).11(ex)2.(ex)+2xyx2]\implies \frac{dy}{dx}=-[ \frac{1}{x^2}.\frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+\frac{2xy}{x^2}]

    dydx=[1x2.1sin1(ex).11(ex)2.(ex)+2(yx)]\implies \frac{dy}{dx}=-[ \frac{1}{x^2}.\frac{1}{sin^{-1}(e^x)}.\frac{1}{\sqrt{1-(e^x)^2}}.(e^x)+2(\frac{y}{x})]


b) Given that tan1(x+y)sin1(ey+x)=4tan^{-1}(x+y)-sin^{-1}(e^y+x)=4 ..........(1)

Differentiating both side of (1) with respect to x,x, we get

ddx[tan1(x+y)]ddx[sin1(ey+x)]=ddx(4)\frac{d}{dx}[tan^{-1}(x+y)]-\frac{d}{dx}[sin^{-1}(e^y+x)]=\frac{d}{dx}(4)

    1[1+(x+y)2].ddx(x+y)11(ey+x)2.ddx(ey+x)=0\implies \frac {1}{[1+(x+y)^2]}.\frac{d}{dx}(x+y)-\frac{1}{\sqrt{1-(e^y+x)^2}}.\frac{d}{dx}(e^y+x)=0

    1[1+(x+y)2].(1+dydx)11(ey+x)2.(1+eydydx)=0\implies \frac {1}{[1+(x+y)^2]}.(1+\frac{dy}{dx})-\frac{1}{\sqrt{1-(e^y+x)^2}}.(1+e^y\frac{dy}{dx})=0

    [1[1+(x+y)2]ey1(ey+x)2].dydx+[1[1+(x+y)2]11(ey+x)2]=0\implies [\frac {1}{[1+(x+y)^2]}-\frac{e^y}{\sqrt{1-(e^y+x)^2}}].\frac{dy}{dx}+[\frac {1}{[1+(x+y)^2]}-\frac{1}{\sqrt{1-(e^y+x)^2}}]=0

    [1(ey+x)2ey[1+(x+y)2]].dydx+[1(ey+x)2[1+(x+y)2]]=0\implies [\sqrt{1-(e^y+x)^2} -e^y[1+(x+y)^2]].\frac{dy}{dx}+[\sqrt{1-(e^y+x)^2} -[1+(x+y)^2]]=0

    dydx=[1(ey+x)2[1+(x+y)2]][1(ey+x)2ey.[1+(x+y)2]]\implies \frac{dy}{dx}=-\frac{[\sqrt{1-(e^y+x)^2} -[1+(x+y)^2]]}{[\sqrt{1-(e^y+x)^2} -e^y.[1+(x+y)^2]]}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment