4(x+1)2 +2(y-2)2 +(z-1)2=1
Finding the equation of the tangent plane to the surface which passes through the point (-1,2,2)
Equation of the tangent plane is
Fx(xo,yo,zo)(x-xo) +Fy(xo,yo,zo)(y-yo) + Fz(xo,yo,zo)(z-zo)
xo=-1 ,yo=2 ,zo=2
F(x,y,z)=4(x+1)2 +2(y-2)2 +(z-1)2-1=0
Fx= 8x + 8 (i.e. partial derivative with respect to x)
Fx(-1,2,2)= 8(-1)+8=0
Fy= 4y - 8(i.e. partial derivative with respect to y)
Fy(-1,2,2)= 4(2) -8= 0
Fz= 2z - 2 (i.e. partial derivative with respect to z)
Fz(-1,2,2)= 2(2)-2=2
Equation of the tangent plane is
Fx(xo,yo,zo)(x-xo) +Fy(xo,yo,zo)(y-yo) + Fz(xo,yo,zo)(z-zo)=0
0(x+1) + 0(y-2) + 2(z-2)=0
2z - 4 =0
2z - 4 =0
The equation of the tangent that passes through the point (-1,2,2) is
2z - 4 =0
Comments
Leave a comment