Let "a_n=\\dfrac{1+2+...+n}{n^2}." Then
"a_n=\\dfrac{\\displaystyle\\bigg(\\sum_{i=1}^i\\bigg)}{n^2}"
"a_n=\\dfrac{\\displaystyle\\dfrac{n(n+1)}{2}}{n^2}"
"a_n=\\dfrac{n^2+n}{2n^2}"
"a_n=\\dfrac{1}{2}+\\dfrac{1}{2n}"
"\\lim\\limits_{n\\to \\infin}\\dfrac{1+2+...+n}{n^2}=\\lim\\limits_{n\\to \\infin}a_n"
"=\\lim\\limits_{n\\to \\infin}\\big(\\dfrac{1}{2}+\\dfrac{1}{2n}\\big)=\\dfrac{1}{2}+0"
"=\\dfrac{1}{2}"
Therefore
Comments
Leave a comment