Question #151779
Determine the limit of (1+2+...+n)/(n^2) when n goes to infinity.
Can I solve this by taking the sequence to n brackets?
1
Expert's answer
2020-12-21T18:35:45-0500

Let an=1+2+...+nn2.a_n=\dfrac{1+2+...+n}{n^2}. Then


an=1+2+...+nn2a_n=\dfrac{1+2+...+n}{n^2}

an=(i=1i)n2a_n=\dfrac{\displaystyle\bigg(\sum_{i=1}^i\bigg)}{n^2}

an=n(n+1)2n2a_n=\dfrac{\displaystyle\dfrac{n(n+1)}{2}}{n^2}

an=n2+n2n2a_n=\dfrac{n^2+n}{2n^2}

an=12+12na_n=\dfrac{1}{2}+\dfrac{1}{2n}

limn1+2+...+nn2=limnan\lim\limits_{n\to \infin}\dfrac{1+2+...+n}{n^2}=\lim\limits_{n\to \infin}a_n

=limn(12+12n)=12+0=\lim\limits_{n\to \infin}\big(\dfrac{1}{2}+\dfrac{1}{2n}\big)=\dfrac{1}{2}+0

=12=\dfrac{1}{2}

Therefore


limn1+2+...+nn2=12\lim\limits_{n\to \infin}\dfrac{1+2+...+n}{n^2}=\dfrac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS