2020-12-17T09:27:15-05:00
We know that limit of (3n/(n+4)) when n goes to infinity is 3. If the definition of convergence of sequences, ε=10^(-5) then determine the cutoff index N.
1
2020-12-21T18:01:54-0500
∣ 3 n n + 4 − 3 ∣ < 1 0 − 5 whenever n > N \big|\dfrac{3n}{n+4}-3\big|<10^{-5} \text{ whenever}\ n>N ∣ ∣ n + 4 3 n − 3 ∣ ∣ < 1 0 − 5 whenever n > N
∣ 3 n − 3 n − 12 n + 4 ∣ < 1 0 − 5 whenever n > N \big|\dfrac{3n-3n-12}{n+4}\big|<10^{-5} \text{ whenever}\ n>N ∣ ∣ n + 4 3 n − 3 n − 12 ∣ ∣ < 1 0 − 5 whenever n > N
∣ − 12 n + 4 ∣ < 1 0 − 5 whenever n > N \big|\dfrac{-12}{n+4}\big|<10^{-5} \text{ whenever}\ n>N ∣ ∣ n + 4 − 12 ∣ ∣ < 1 0 − 5 whenever n > N
12 1 0 − 5 < n + 4 whenever n > N \dfrac{12}{10^{-5}}<n+4\text{ whenever}\ n>N 1 0 − 5 12 < n + 4 whenever n > N
n > 1200000 − 4 n>1200000-4 n > 1200000 − 4
N = 1199996 N=1199996 N = 1199996
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments