Question #151776
We know that limit of (3n/(n+4)) when n goes to infinity is 3. If the definition of convergence of sequences, ε=10^(-5) then determine the cutoff index N.
1
Expert's answer
2020-12-21T18:01:54-0500
3nn+43<105 whenever n>N\big|\dfrac{3n}{n+4}-3\big|<10^{-5} \text{ whenever}\ n>N

3n3n12n+4<105 whenever n>N\big|\dfrac{3n-3n-12}{n+4}\big|<10^{-5} \text{ whenever}\ n>N

12n+4<105 whenever n>N\big|\dfrac{-12}{n+4}\big|<10^{-5} \text{ whenever}\ n>N

12105<n+4 whenever n>N\dfrac{12}{10^{-5}}<n+4\text{ whenever}\ n>N

n>12000004n>1200000-4

N=1199996N=1199996


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS