Answer to Question #151776 in Calculus for Cypress
2020-12-17T09:27:15-05:00
We know that limit of (3n/(n+4)) when n goes to infinity is 3. If the definition of convergence of sequences, ε=10^(-5) then determine the cutoff index N.
1
2020-12-21T18:01:54-0500
"\\big|\\dfrac{3n}{n+4}-3\\big|<10^{-5} \\text{ whenever}\\ n>N"
"\\big|\\dfrac{3n-3n-12}{n+4}\\big|<10^{-5} \\text{ whenever}\\ n>N"
"\\big|\\dfrac{-12}{n+4}\\big|<10^{-5} \\text{ whenever}\\ n>N"
"\\dfrac{12}{10^{-5}}<n+4\\text{ whenever}\\ n>N"
"n>1200000-4"
"N=1199996"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment