Solution. Find the intersection points of the lines
y = x 3 − 12 x y=x^3-12x y = x 3 − 12 x y = 0 y=0 y = 0 Therefore get x 3 − 12 x = 0 x^3-12x=0 x 3 − 12 x = 0
x ( x 2 − 12 ) = 0 x(x^2-12)=0 x ( x 2 − 12 ) = 0 The roots of the equation are
x 1 = 0 x_1=0 x 1 = 0 x 2 = 12 = 2 3 x_2=\sqrt{12}=2\sqrt{3} x 2 = 12 = 2 3 x 3 = − 12 = − 2 3 x_3=-\sqrt{12}=-2\sqrt{3} x 3 = − 12 = − 2 3 Sketch the curve indicating the area bounded.
Find the area bounded by the curve y = x^3-12 x and the x-axis. (considering the symmetry of the figure)
A = 2 ∫ − 2 3 0 ( x 3 − 12 x − 0 ) d x = ∫ − 2 3 0 ( 2 x 3 − 24 x ) d x = A=2\int_{-2\sqrt{3}}^0(x^3-12x-0)dx=\int_{-2\sqrt{3}}^0(2x^3-24x)dx= A = 2 ∫ − 2 3 0 ( x 3 − 12 x − 0 ) d x = ∫ − 2 3 0 ( 2 x 3 − 24 x ) d x =
= ( x 4 2 − 12 x 2 ) ∣ − 2 3 0 = 0 − 72 + 144 = 72 =(\frac{x^4}{2}-12x^2)|_{-2\sqrt{3}}^0=0-72+144=72 = ( 2 x 4 − 12 x 2 ) ∣ − 2 3 0 = 0 − 72 + 144 = 72 Answer. 72.
Comments