Question #151573
Find the volume generated by revolving the area bounded by the lines x+2y=4, x=0 and y=0, about x-axis.
1
Expert's answer
2020-12-21T18:36:48-0500
x+2y=4=>y=12x+2x+2y=4=>y=-\dfrac{1}{2}x+2y=0:0=12x+2=>x=4,Point(4,0)y=0: 0=-\dfrac{1}{2}x+2=>x=4, Point (4,0)
V=π04(12x+2)2dx=π04(14x22x+4)2dxV=\pi\displaystyle\int_{0}^4(-\dfrac{1}{2}x+2)^2dx=\pi\displaystyle\int_{0}^4(\dfrac{1}{4}x^2-2x+4)^2dx

=π[112x3x2+4x]40=π(641216+160)=\pi\big[\dfrac{1}{12}x^3-x^2+4x\big]\begin{matrix} 4 \\ 0 \end{matrix}=\pi(\dfrac{64}{12}-16+16-0)

=16π3(units3)=\dfrac{16\pi}{3} (units^3)

V=16π3 cubic unitsV=\dfrac{16\pi}{3}\ cubic\ units



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS