y=3z+4x2
"y=3z+4x^2\\\\"
Making Z the subject of the formula, we get
"Z=\\frac{1}{3}y-\\frac{4}{3}x^2\\\\\nF(x, y)=\\frac{1}{3}y-\\frac{4}{3}x^2\\\\"
The equation to the tangent of the surface is
∂F/∂x(a,b,c)(x−a)+∂F/∂y(a,b,c)(y−b)+∂F/∂z(a,b,c)(z−c)=0
Where
a=0
b=3
c=1
∂F/∂x="\\frac{-8}{3}x"
∂F/∂y="\\frac{1}{3}"
The equation of the tangent plane to the surface z=f(x,y) at the point (a,b,f(a,b)) is
∂f/∂x(a,b)(x−a)+∂f/∂y(a,b)(y−b)−z+f(a,b)=0
So the equation of the tangent plane at the point (0, 3, 1) is
"\\frac{-8}{3}(0)(x-0)+\\frac{1}{3}(y-3)-z+1=0\\\\\n\\frac{-8}{3}(0)+\\frac{1}{3}y-1-z+1=0\\\\\n0+\\frac{1}{3}y-z=0\\\\\ny-3z=0\\\\"
Comments
Leave a comment