x2+y2+z2=9
and
x2+y2=1
Using
r2=x2+y2
r2=1
z=(9−r2)
The volume of the solid in cylindrical coordinates is:
V=∫02π∫01∫−9−r29−r2rdzdrdθ
Evaluating the first integral, we have:
V=∫02π∫012r9−r2drdθ ...
Evaluating the second integral, we have:
V=∫02π18−3322dθ
Evaluating in terms of the angle, we have;
V=18(2π)−3322(2π)
V=36π−364π2
Comments
Leave a comment