"x^2+y^2+z^2=9"
and
"x^2+y^2=1"
Using
"r^2 =x^2 +y^2"
"r^2 =1"
"z=\\sqrt{ (9-r^2)}"
The volume of the solid in cylindrical coordinates is:
"V= \\int_{0}^{2\\pi} \\int_{0}^{1} \\int_{-\\sqrt{9-r^2}}^{\\sqrt{9-r^2}} rdzdrd\u03b8"
Evaluating the first integral, we have:
"V= \\int_{0}^{2\\pi} \\int_{0}^{1}2r \\sqrt{9-r^2}drd\u03b8" ...
Evaluating the second integral, we have:
"V= \\int_{0}^{2\\pi} 18 - \\frac {32\\sqrt2}{3}d\u03b8"
Evaluating in terms of the angle, we have;
"V= 18(2\\pi) - \\frac {32\\sqrt2}{3} (2\\pi)"
"V= 36\\pi - \\frac {64 \\pi\\sqrt2}{3}"
Comments
Leave a comment