x 2 + y 2 + z 2 = 9 x^2+y^2+z^2=9 x 2 + y 2 + z 2 = 9
and
x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1
Using
r 2 = x 2 + y 2 r^2 =x^2 +y^2 r 2 = x 2 + y 2
r 2 = 1 r^2 =1 r 2 = 1
z = ( 9 − r 2 ) z=\sqrt{ (9-r^2)} z = ( 9 − r 2 )
The volume of the solid in cylindrical coordinates is:
V = ∫ 0 2 π ∫ 0 1 ∫ − 9 − r 2 9 − r 2 r d z d r d θ V= \int_{0}^{2\pi} \int_{0}^{1} \int_{-\sqrt{9-r^2}}^{\sqrt{9-r^2}} rdzdrdθ V = ∫ 0 2 π ∫ 0 1 ∫ − 9 − r 2 9 − r 2 r d z d r d θ
Evaluating the first integral, we have:
V = ∫ 0 2 π ∫ 0 1 2 r 9 − r 2 d r d θ V= \int_{0}^{2\pi} \int_{0}^{1}2r \sqrt{9-r^2}drdθ V = ∫ 0 2 π ∫ 0 1 2 r 9 − r 2 d r d θ ...
Evaluating the second integral, we have:
V = ∫ 0 2 π 18 − 32 2 3 d θ V= \int_{0}^{2\pi} 18 - \frac {32\sqrt2}{3}dθ V = ∫ 0 2 π 18 − 3 32 2 d θ
Evaluating in terms of the angle, we have;
V = 18 ( 2 π ) − 32 2 3 ( 2 π ) V= 18(2\pi) - \frac {32\sqrt2}{3} (2\pi) V = 18 ( 2 π ) − 3 32 2 ( 2 π )
V = 36 π − 64 π 2 3 V= 36\pi - \frac {64 \pi\sqrt2}{3} V = 36 π − 3 64 π 2
Comments