Trace the curve x3 + y2 = 2axy
Equation of the curve :- "\\pmb {x^3+y^2=2axy}"
"x^3+y^2=2axy\\\\\n\\Rightarrow y^2-2axy+x^3=0\\\\\n\\Rightarrow y=\\frac{2ax \\pm \\sqrt{4a^2x^2-4x^3}}{2}=ax\\pm x\\sqrt{a^2-x}"
"\\therefore" The curve is combination of two Branches :
"y=ax+ x\\sqrt{a^2-x}" ...[Branch 1]
and, "y=ax- x\\sqrt{a^2-x}" ...[ Branch 2]
Differentiating w.r.t x,
"\\frac{dy}{dx}=a\\pm \\left(\\sqrt{a^2-x} -\\frac{x}{2\\sqrt{a^2-x} }\\right)"
Symmetry :-
The curve is not symmetric w.r.t. any line or axis.
Region :-
"y=ax \\pm x\\sqrt{a^2-x} \\\\\ny \\in \\R \\Rightarrow a^2-x >0 \\Rightarrow x<a^2"
"\\therefore x \\in (-\\infty,a^2), y\\in (-\\infty, \\infty)"
Point of Intersection :-
Putting "x=0," "y=0"
Putting "y=0," "x=0"
"\\therefore" The curve passes through origin.
Let "(h,k)" be the intersection of Branch 1 and Branch 2.
"\\therefore ah+h\\sqrt{a^2-h}=ah-h\\sqrt{a^2-h}\\\\\n\\Rightarrow h\\sqrt{a^2-h}=0\\\\\n\\Rightarrow h= 0 \\; or, \\; a^2\\\\\n\\Rightarrow k=0 \\; or, \\; a^3"
So, Branch 1 and Branch 2 meet at "(0,0)" and "(a^2,a^3)".
Tangents at Origin :-
At "(0,0) , \\frac{dy}{dx}=a\\pm \\left(\\sqrt{a^2-0}-0\\right)=a\\pm a =2a\\; or, \\; 0"
"\\therefore" Tangents at origin are :-
"y=2ax \\; \\;\\;and\\;\\;\\; y=0"
So, "(0,0) \\; is \\; a \\; node." [ As two tangents are distinct ]
Asymptotes :-
Coefficient of highest degree of "x" and "y" are both constant. So, There does not exist any horizontal or vertical asymptote.
Putting "y=mx+c,\\\\"
"x^3+m^2x^2+2mcx+c^2=2axy"
"\\Rightarrow" Coff. of "x^3=1=Constant"
So There does not exist any oblique asymptote either.
Derivatives :-
"y=ax\\pm x\\sqrt{a^2-x} \\\\\n\\Rightarrow \\frac{dy}{dx}=a\\pm \\left(\\sqrt{a^2-x} -\\frac{x}{2\\sqrt{a^2-x} }\\right)\\\\"
Now, "\\frac{dy}{dx}=0"
"\\Rightarrow a= \\pm \\frac{2(a^2-x)-x}{2\\sqrt{a^2-x} }\\\\\n\\Rightarrow4a^2(a^2-x)=4a^4-12a^2x+9x^2\\\\\n\\Rightarrow x=0 \\; or, \\; x=\\frac{8a^2}{9}"
"\\therefore \\frac{dy}{dx}=0" at "x=8a^2\/9" for Branch 1
at "x=0" for Branch 2
Now,
for "\\pmb{a>0, }"
"Branch \\;1""y=ax+ x\\sqrt{a^2-x} \\\\\\Rightarrow \\frac{d^2y}{dx^2}= \\frac{3x-4a^2}{4(a^2-x)^{3\/2}}"
At "x=\\frac{8a^2}{9}, \\; \\frac{d^2y}{dx^2}=-\\frac{9}{a}<0"
So, Branch 1 has a local maxima at "x=\\frac{8a^2}{9}" .
"y=ax- x\\sqrt{a^2-x} \\\\\\Rightarrow \\frac{d^2y}{dx^2}= -\\frac{3x-4a^2}{4(a^2-x)^{3\/2}}"
At "x=0, \\; \\frac{d^2y}{dx^2}=\\frac{1}{a}>0"
So, Branch 2 has a local minima at "x=0" .
for "\\pmb{a<0,}"
"Branch \\;1""y=ax+ x\\sqrt{a^2-x} \\\\\\Rightarrow \\frac{d^2y}{dx^2}= \\frac{3x-4a^2}{4(a^2-x)^{3\/2}}"
At "x=\\frac{8a^2}{9}, \\; \\frac{d^2y}{dx^2}=-\\frac{9}{a}>0"
So, Branch 1 has a local minima at "x=\\frac{8a^2}{9}" .
"y=ax- x\\sqrt{a^2-x} \\\\\\Rightarrow \\frac{d^2y}{dx^2}= -\\frac{3x-4a^2}{4(a^2-x)^{3\/2}}"
At "x=0, \\; \\frac{d^2y}{dx^2}=\\frac{1}{a}<0"
So, Branch 2 has a local maxima at "x=0" .
Comments
Leave a comment