Question #153127

Trace the curve x3 + y2 = 2axy 


1
Expert's answer
2020-12-29T17:44:15-0500

Equation of the curve :- x3+y2=2axy\pmb {x^3+y^2=2axy}

x3+y2=2axyy22axy+x3=0y=2ax±4a2x24x32=ax±xa2xx^3+y^2=2axy\\ \Rightarrow y^2-2axy+x^3=0\\ \Rightarrow y=\frac{2ax \pm \sqrt{4a^2x^2-4x^3}}{2}=ax\pm x\sqrt{a^2-x}


\therefore The curve is combination of two Branches :

y=ax+xa2xy=ax+ x\sqrt{a^2-x} ...[Branch 1]

and, y=axxa2xy=ax- x\sqrt{a^2-x} ...[ Branch 2]


Differentiating w.r.t x,

dydx=a±(a2xx2a2x)\frac{dy}{dx}=a\pm \left(\sqrt{a^2-x} -\frac{x}{2\sqrt{a^2-x} }\right)


Symmetry :-

The curve is not symmetric w.r.t. any line or axis.


Region :-

y=ax±xa2xyRa2x>0x<a2y=ax \pm x\sqrt{a^2-x} \\ y \in \R \Rightarrow a^2-x >0 \Rightarrow x<a^2


x(,a2),y(,)\therefore x \in (-\infty,a^2), y\in (-\infty, \infty)


Point of Intersection :-

Putting x=0,x=0, y=0y=0

Putting y=0,y=0, x=0x=0

\therefore The curve passes through origin.


Let (h,k)(h,k) be the intersection of Branch 1 and Branch 2.


ah+ha2h=ahha2hha2h=0h=0  or,  a2k=0  or,  a3\therefore ah+h\sqrt{a^2-h}=ah-h\sqrt{a^2-h}\\ \Rightarrow h\sqrt{a^2-h}=0\\ \Rightarrow h= 0 \; or, \; a^2\\ \Rightarrow k=0 \; or, \; a^3


So, Branch 1 and Branch 2 meet at (0,0)(0,0) and (a2,a3)(a^2,a^3).


Tangents at Origin :-

At (0,0),dydx=a±(a200)=a±a=2a  or,  0(0,0) , \frac{dy}{dx}=a\pm \left(\sqrt{a^2-0}-0\right)=a\pm a =2a\; or, \; 0

\therefore Tangents at origin are :-

y=2ax      and      y=0y=2ax \; \;\;and\;\;\; y=0


So, (0,0)  is  a  node.(0,0) \; is \; a \; node. [ As two tangents are distinct ]


Asymptotes :-

Coefficient of highest degree of xx and yy are both constant. So, There does not exist any horizontal or vertical asymptote.


Putting y=mx+c,y=mx+c,\\

x3+m2x2+2mcx+c2=2axyx^3+m^2x^2+2mcx+c^2=2axy

\Rightarrow Coff. of x3=1=Constantx^3=1=Constant

So There does not exist any oblique asymptote either.


Derivatives :-

y=ax±xa2xdydx=a±(a2xx2a2x)y=ax\pm x\sqrt{a^2-x} \\ \Rightarrow \frac{dy}{dx}=a\pm \left(\sqrt{a^2-x} -\frac{x}{2\sqrt{a^2-x} }\right)\\


Now, dydx=0\frac{dy}{dx}=0

a=±2(a2x)x2a2x4a2(a2x)=4a412a2x+9x2x=0  or,  x=8a29\Rightarrow a= \pm \frac{2(a^2-x)-x}{2\sqrt{a^2-x} }\\ \Rightarrow4a^2(a^2-x)=4a^4-12a^2x+9x^2\\ \Rightarrow x=0 \; or, \; x=\frac{8a^2}{9}


dydx=0\therefore \frac{dy}{dx}=0 at x=8a2/9x=8a^2/9 for Branch 1

at x=0x=0 for Branch 2


Now,

for a>0,\pmb{a>0, }

Branch  1Branch \;1

y=ax+xa2xd2ydx2=3x4a24(a2x)3/2y=ax+ x\sqrt{a^2-x} \\\Rightarrow \frac{d^2y}{dx^2}= \frac{3x-4a^2}{4(a^2-x)^{3/2}}

At x=8a29,  d2ydx2=9a<0x=\frac{8a^2}{9}, \; \frac{d^2y}{dx^2}=-\frac{9}{a}<0


So, Branch 1 has a local maxima at x=8a29x=\frac{8a^2}{9} .



Branch  2Branch \;2


y=axxa2xd2ydx2=3x4a24(a2x)3/2y=ax- x\sqrt{a^2-x} \\\Rightarrow \frac{d^2y}{dx^2}= -\frac{3x-4a^2}{4(a^2-x)^{3/2}}

At x=0,  d2ydx2=1a>0x=0, \; \frac{d^2y}{dx^2}=\frac{1}{a}>0


So, Branch 2 has a local minima at x=0x=0 .


(a>0)\pmb{(a>0)}


for a<0,\pmb{a<0,}

Branch  1Branch \;1

y=ax+xa2xd2ydx2=3x4a24(a2x)3/2y=ax+ x\sqrt{a^2-x} \\\Rightarrow \frac{d^2y}{dx^2}= \frac{3x-4a^2}{4(a^2-x)^{3/2}}

At x=8a29,  d2ydx2=9a>0x=\frac{8a^2}{9}, \; \frac{d^2y}{dx^2}=-\frac{9}{a}>0


So, Branch 1 has a local minima at x=8a29x=\frac{8a^2}{9} .



Branch  2Branch \;2

y=axxa2xd2ydx2=3x4a24(a2x)3/2y=ax- x\sqrt{a^2-x} \\\Rightarrow \frac{d^2y}{dx^2}= -\frac{3x-4a^2}{4(a^2-x)^{3/2}}

At x=0,  d2ydx2=1a<0x=0, \; \frac{d^2y}{dx^2}=\frac{1}{a}<0


So, Branch 2 has a local maxima at x=0x=0 .



(a<0)\pmb{(a<0)}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS