Answer to Question #153058 in Calculus for Hasan

Question #153058
Find the relative extrema using both First and Second Partial Derivative test
fx=1+8x-3x2
1
Expert's answer
2020-12-29T15:22:05-0500

f(x)=1+8x3x2f(x)=1+8x-3x^2

Differentiating w.r.t xx ,

f(x)=ddx(f(x))=86xf'(x)=\frac{d}{dx}(f(x))=8-6x

Differentiating w.r.t xx ,

f(x)=d2f(x)dx=ddx(f(x))=6f''(x)=\frac{d^2f(x)}{dx}=\frac{d}{dx}(f'(x))=-6


First Derivative test :-

f(x)=086x=0x=43f'(x)=0 \Rightarrow 8-6x=0 \Rightarrow x= \frac{4}{3}

f(x)\Rightarrow f(x) has a critical point at x=43x=\frac{4}{3}

If x<43,f(x)=86x>0x<\frac{4}{3}, f'(x)=8-6x>0

\Rightarrow f(x)f(x) is increasing x<43\forall x<\frac{4}{3}


If x>43x>\frac{4}{3}, f(x)=86x<0f'(x)=8-6x<0

f(x)\Rightarrow f(x) is decreasing x>43\forall x>\frac{4}{3}


Second Derivative test :-

f(43)=6<0f''(\frac{4}{3})=-6<0 , as f(x)=6xRf''(x)=-6 \forall x\in \R


Now, f(4/3)=1+323163=193f(4/3)=1+\frac{32}{3}-\frac{16}{3}=\frac{19}{3}


So, from First and Second derivative test, we can conclude that:-


f(x)f(x) has a relative maximum, 193\frac{19}{3} at x=43x=\frac{4}{3} .

and, ff doesn't have a relative minimum.


Graph :-







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment