f is not Integrable if a=b
Proof :-
Let a partition be, P
Where P:a=x0<x1<...<xn=b
Let, Ij=[xj−1,xj] , Mj=supIjf , mj=infIjf
Now ∀j∈{1,2,...,n} ∃ a rational and an irrational number ∈Ij
⇒Mj=4 and mj=−3 ∀j∈{1,2,...,n}
∴U(f,P)=∑j=1∞∣Ij∣Mj=∑j=1∞∣Ij∣×4
=4×∑j=1∞∣Ij∣=4(b−a)
and L(f,P)=∑j=1∞∣Ij∣mj=∑j=1∞∣Ij∣×(−3)
=(−3)×∑j=1∞∣Ij∣=3(a−b)
So, Lower Integral, L1=supPL(f,P)=supP3(a−b)=3(a−b)
and, Upper Integral, L2=supPU(f,P)=infP4(b−a)=4(b−a)
Now if a=b,
L1=3(a−b)=4(b−a)=L2
Hence, f is not integrable on [a,b] , if a=b
If a=b, clearly f is integrable and ∫abf=0 .
Comments