f is not Integrable if "a \\neq b"
Proof :-
Let a partition be, "P"
Where "P : a=x_0<x_1<...<x_n=b"
Let, "I_j= [x_{j-1},x_j]" , "M_j= \\sup_{I_j} f" , "m_j=\\inf_{I_j}f"
Now "\\forall j\\in \\{1,2,...,n\\}" "\\exists" a rational and an irrational number "\\in I_j"
"\\Rightarrow M_j=4" and "m_j=-3" "\\forall j\\in \\{1,2,...,n\\}"
"\\therefore U(f, P) = \\sum_{j=1}^{\\infty}|I_j|M_j=\\sum_{j=1}^{\\infty}|I_j|\\times4"
"=4\\times\\sum_{j=1}^{\\infty}|I_j|=4(b-a)"
and "L(f, P) = \\sum_{j=1}^{\\infty}|I_j|m_j=\\sum_{j=1}^{\\infty}|I_j|\\times(-3)"
"=(-3)\\times\\sum_{j=1}^{\\infty}|I_j|=3(a-b)"
So, Lower Integral, "L_1= \\sup_{P}L(f,P)=\\sup_{P}3(a-b)=3(a-b)"
and, Upper Integral, "L_2= \\sup_{P}U(f,P)=\\inf_{P}4(b-a)=4(b-a)"
Now if "a\\neq b,"
"L_1=3(a-b)\\neq 4(b-a)=L_2"
Hence, "f" is not integrable on "[a,b]" , if "a\\neq b"
If "a=b," clearly f is integrable and "\\int_a^bf=0" .
Comments
Leave a comment