Question #152982
A function f:[a,b]–R is defined as
f(x) = 4 if x is rational
f(x) = -3 if x is irrational
Check whether f is integrable on [a,b]. Justify your answer
1
Expert's answer
2020-12-28T18:52:49-0500

f is not Integrable if aba \neq b


Proof :-

Let a partition be, PP

Where P:a=x0<x1<...<xn=bP : a=x_0<x_1<...<x_n=b

Let, Ij=[xj1,xj]I_j= [x_{j-1},x_j] , Mj=supIjfM_j= \sup_{I_j} f , mj=infIjfm_j=\inf_{I_j}f

Now j{1,2,...,n}\forall j\in \{1,2,...,n\} \exists a rational and an irrational number Ij\in I_j

Mj=4\Rightarrow M_j=4 and mj=3m_j=-3 j{1,2,...,n}\forall j\in \{1,2,...,n\}


U(f,P)=j=1IjMj=j=1Ij×4\therefore U(f, P) = \sum_{j=1}^{\infty}|I_j|M_j=\sum_{j=1}^{\infty}|I_j|\times4

=4×j=1Ij=4(ba)=4\times\sum_{j=1}^{\infty}|I_j|=4(b-a)


and L(f,P)=j=1Ijmj=j=1Ij×(3)L(f, P) = \sum_{j=1}^{\infty}|I_j|m_j=\sum_{j=1}^{\infty}|I_j|\times(-3)


=(3)×j=1Ij=3(ab)=(-3)\times\sum_{j=1}^{\infty}|I_j|=3(a-b)



So, Lower Integral, L1=supPL(f,P)=supP3(ab)=3(ab)L_1= \sup_{P}L(f,P)=\sup_{P}3(a-b)=3(a-b)

and, Upper Integral, L2=supPU(f,P)=infP4(ba)=4(ba)L_2= \sup_{P}U(f,P)=\inf_{P}4(b-a)=4(b-a)


Now if ab,a\neq b,

L1=3(ab)4(ba)=L2L_1=3(a-b)\neq 4(b-a)=L_2


Hence, ff is not integrable on [a,b][a,b] , if aba\neq b


If a=b,a=b, clearly f is integrable and abf=0\int_a^bf=0 .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS