∫02∫01(2x+y)8dxdy=
=∫02(181(2x+y)9∣x=0x=1)dy=
=∫02(181((2+y)9−y9))dy=
=1801((2+y)10−y10)∣y=0y=2=
=1801(220−210−210)=451(218−29)=
=4529∗(29−1)
∫04∫0yxy2dxdy =
=∫04(21x2y2)∣x=0x=ydy=
=∫0421y3dy=81y4∣y=0y=4=
=32
∫∫R(6x2y3−5y4)dA,R={(x,y)∣0≤x≤3,0≤y≤1∣}
=∫01∫03(6x2y3−5y4)dxdy=
=∫01(2x3y3−5xy4)∣x=0x=3dy=
=∫01(54y3−15y4)dy=
=(227y4−3y5)∣y=0y=1=
=227−3=1021
∫∫Rxyex2ydA,R={(x,y)∣0≤x≤1,0≤y≤2∣}
=∫02∫01xyex2ydxdy=
=∫02(21ex2y∣x=0x=1)dy=
=∫01(21(ey−1))dy=
=21(ey−y)∣y=0y=1=
=21(e−1−1)=2e−1
Comments