∫ 0 2 ∫ 0 1 ( 2 x + y ) 8 d x d y = \int _0^2\int _0^1\:\left(2x+y\right)^8dx\:dy= ∫ 0 2 ∫ 0 1 ( 2 x + y ) 8 d x d y =
= ∫ 0 2 ( 1 18 ( 2 x + y ) 9 ∣ x = 0 x = 1 ) d y = =\int _0^2(\frac{1}{18}(2x+y)^9|_{x=0}^{x=1})\:dy= = ∫ 0 2 ( 18 1 ( 2 x + y ) 9 ∣ x = 0 x = 1 ) d y =
= ∫ 0 2 ( 1 18 ( ( 2 + y ) 9 − y 9 ) ) d y = =\int _0^2(\frac{1}{18}((2+y)^9-y^9))\:dy= = ∫ 0 2 ( 18 1 (( 2 + y ) 9 − y 9 )) d y =
= 1 180 ( ( 2 + y ) 10 − y 10 ) ∣ y = 0 y = 2 = =\frac{1}{180}((2+y)^{10}-y^{10})|_{y=0}^{y=2}= = 180 1 (( 2 + y ) 10 − y 10 ) ∣ y = 0 y = 2 =
= 1 180 ( 2 20 − 2 10 − 2 10 ) = 1 45 ( 2 18 − 2 9 ) = =\frac{1}{180}(2^{20}-2^{10}-2^{10})=\frac{1}{45}(2^{18}-2^9)= = 180 1 ( 2 20 − 2 10 − 2 10 ) = 45 1 ( 2 18 − 2 9 ) =
= 2 9 45 ∗ ( 2 9 − 1 ) =\frac{2^9}{45}*(2^{9}-1) = 45 2 9 ∗ ( 2 9 − 1 )
∫ 0 4 ∫ 0 y x y 2 d x d y \:\int _0^4\int _0^{\sqrt{y}}\:xy^2\:dx\:dy ∫ 0 4 ∫ 0 y x y 2 d x d y =
= ∫ 0 4 ( 1 2 x 2 y 2 ) ∣ x = 0 x = y d y = =\:\int _0^4(\frac{1}{2}x^2y^2)|_{x=0}^{x=\sqrt{y}}\:dy= = ∫ 0 4 ( 2 1 x 2 y 2 ) ∣ x = 0 x = y d y =
= ∫ 0 4 1 2 y 3 d y = 1 8 y 4 ∣ y = 0 y = 4 = =\:\int _0^4\frac{1}{2}y^3\:dy=\frac{1}{8}y^4|_{y=0}^{y=4}= = ∫ 0 4 2 1 y 3 d y = 8 1 y 4 ∣ y = 0 y = 4 =
= 32 =32 = 32
∫ ∫ R ( 6 x 2 y 3 − 5 y 4 ) d A , R = { ( x , y ) ∣ 0 ≤ x ≤ 3 , 0 ≤ y ≤ 1 ∣ } \int \int R\:\left(6x^2y^3-5y^4\right)\:dA,\:R=\left\{\left(x,y\right)\left|0\le x\le 3,0\le y\le 1\right|\:\right\} ∫∫ R ( 6 x 2 y 3 − 5 y 4 ) d A , R = { ( x , y ) ∣ 0 ≤ x ≤ 3 , 0 ≤ y ≤ 1 ∣ }
= ∫ 0 1 ∫ 0 3 ( 6 x 2 y 3 − 5 y 4 ) d x d y = =\int _0^1\int _0^3\:(6x^2y^3-5y^4)\:dx\:dy= = ∫ 0 1 ∫ 0 3 ( 6 x 2 y 3 − 5 y 4 ) d x d y =
= ∫ 0 1 ( 2 x 3 y 3 − 5 x y 4 ) ∣ x = 0 x = 3 d y = =\int _0^1(2x^3y^3-5xy^4)|_{x=0}^{x=3}\:dy= = ∫ 0 1 ( 2 x 3 y 3 − 5 x y 4 ) ∣ x = 0 x = 3 d y =
= ∫ 0 1 ( 54 y 3 − 15 y 4 ) d y = =\int _0^1(54y^3-15y^4)\:dy= = ∫ 0 1 ( 54 y 3 − 15 y 4 ) d y =
= ( 27 2 y 4 − 3 y 5 ) ∣ y = 0 y = 1 = =(\frac{27}{2}y^4-3y^5)|_{y=0}^{y=1}= = ( 2 27 y 4 − 3 y 5 ) ∣ y = 0 y = 1 =
= 27 2 − 3 = 10 1 2 =\frac{27}{2}-3=10\frac{1}{2} = 2 27 − 3 = 10 2 1
∫ ∫ R x y e x 2 y d A , R = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 ∣ } \int \int R\:xye^{x^2y}\:dA,\:R=\left\{\left(x,y\right)\left|0\le x\le 1,0\le y\le 2\right|\:\right\} ∫∫ R x y e x 2 y d A , R = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 ∣ }
= ∫ 0 2 ∫ 0 1 x y e x 2 y d x d y = =\int _0^2\int _0^1\:xye^{x^2y}\:dx\:dy= = ∫ 0 2 ∫ 0 1 x y e x 2 y d x d y =
= ∫ 0 2 ( 1 2 e x 2 y ∣ x = 0 x = 1 ) d y = =\int_0^2(\frac{1}{2}e^{x^2y}|_{x=0}^{x=1})\:dy= = ∫ 0 2 ( 2 1 e x 2 y ∣ x = 0 x = 1 ) d y =
= ∫ 0 1 ( 1 2 ( e y − 1 ) ) d y = =\int_0^1(\frac{1}{2}(e^y-1))\:dy= = ∫ 0 1 ( 2 1 ( e y − 1 )) d y =
= 1 2 ( e y − y ) ∣ y = 0 y = 1 = =\frac{1}{2}(e^y-y)|_{y=0}^{y=1}= = 2 1 ( e y − y ) ∣ y = 0 y = 1 =
= 1 2 ( e − 1 − 1 ) = e 2 − 1 =\frac{1}{2}(e-1-1)=\frac{e}{2}-1 = 2 1 ( e − 1 − 1 ) = 2 e − 1
Comments