Question #150520
* Identify the curves (lines, parabola, etc.) generated by illustrating the graphs

5. Find the volume of the solid that lies under the surface z = xy and above the triangle with vertices (1, 1), (4,1), and (1, 2).

6. Evaluate \:\int _0^1\int _{x^2}^{\sqrt{x}}\:x^2ydydx and find the volume.
1
Expert's answer
2020-12-15T02:12:16-0500
  1. Find the volume of the solid that lies under the surface z = xy and above the triangle with vertices (1, 1), (4,1), and (1, 2)

Remember that:

Using the given points, graph the triangle. Note that x lies from 1 to 4 inclusive and y lies from 1 to the line connecting the points (1,2), (4,1), By inspection, this region is a type 1. this given following equation

y - 2 = -(x-1) / 3;

y = x / 3 + 7 / 3;

Set D = (x, y) | 1 \leq x \leq 4, 1 \leq y \leq -x/3 + 7/3;


V = 141x3+73xydydx\:\int _1^4\int _{1}^{\frac{-x}{3}+\frac{7}{3}}\:xydydx = 14[xy22]x3+73dx\:\int _1^4\lbrack \frac{xy^2}{2} \rbrack ^ {\frac{-x}{3}+\frac{7}{3}}dx =


1214(x(x3+73)x)dx\frac{1}{2}\:\int _1^4\lparen x \lparen \frac{-x}{3} + \frac{7}{3} \rparen - x \rparen dx =


= 1214(x314x2+40x)dx\frac{1}{2}\:\int _1^4\lparen x^3 - 14x^2+40x \rparen dx = 118[x4414x33+20x2]14=\frac{1}{18} \lbrack \frac{x^4}{4} - \frac{14x^3}{3} + 20x^2 \rbrack _1^4 =


118(14(255)143(63)+20(15))=318\frac{1}{18} \lparen\frac{1}{4}\lparen255\rparen-\frac{14}{3}\lparen63\rparen+20\lparen15\rparen\rparen =\frac{31}{8}


  1. Evaluate 01x2xx2ydydx\:\int _0^1\int _{x^2}^{\sqrt{x}}\:x^2ydydx and find the value

V = 010.5x2y2|x2xdx\:\int _0^1\:0.5x^2y^2\text{\textbar}_{x^2}^{\sqrt{x}}dx = 010.5x2(x)20.5x2(x2)2dx\:\int _0^1\:0.5x^2(\sqrt{x})^2-0.5x^2(x^2)^2dx = 010.5(x3x6)dx\:\int _0^1\:0.5(x^3-x^6)dx =

x4/8x7/14|01x^4/8 - x^7/14\text{\textbar}_0^{1} = 1 / 8 - 1 / 14 = (7 - 4) / 56 = 3 / 56;


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS