Remember that:
Using the given points, graph the triangle. Note that x lies from 1 to 4 inclusive and y lies from 1 to the line connecting the points (1,2), (4,1), By inspection, this region is a type 1. this given following equation
y - 2 = -(x-1) / 3;
y = x / 3 + 7 / 3;
Set D = (x, y) | 1 "\\leq" x "\\leq" 4, 1 "\\leq" y "\\leq" -x/3 + 7/3;
V = "\\:\\int _1^4\\int _{1}^{\\frac{-x}{3}+\\frac{7}{3}}\\:xydydx" = "\\:\\int _1^4\\lbrack \\frac{xy^2}{2} \\rbrack ^ {\\frac{-x}{3}+\\frac{7}{3}}dx" =
"\\frac{1}{2}\\:\\int _1^4\\lparen x \\lparen \\frac{-x}{3} + \\frac{7}{3} \\rparen - x \\rparen dx" =
= "\\frac{1}{2}\\:\\int _1^4\\lparen x^3 - 14x^2+40x \\rparen dx" = "\\frac{1}{18} \\lbrack \\frac{x^4}{4} - \\frac{14x^3}{3} + 20x^2 \\rbrack _1^4 ="
"\\frac{1}{18} \\lparen\\frac{1}{4}\\lparen255\\rparen-\\frac{14}{3}\\lparen63\\rparen+20\\lparen15\\rparen\\rparen =\\frac{31}{8}"
V = "\\:\\int _0^1\\:0.5x^2y^2\\text{\\textbar}_{x^2}^{\\sqrt{x}}dx" = "\\:\\int _0^1\\:0.5x^2(\\sqrt{x})^2-0.5x^2(x^2)^2dx" = "\\:\\int _0^1\\:0.5(x^3-x^6)dx" =
"x^4\/8 - x^7\/14\\text{\\textbar}_0^{1}" = 1 / 8 - 1 / 14 = (7 - 4) / 56 = 3 / 56;
Comments
Leave a comment