a) A function f(x) is said to be continuous at a point x=a of its domain,iff x→alimf(x)=f(a)
⟹x→a−limf(x)=x→a+limf(x)=f(a)
We know that, x→a−limf(x)=h→0limf(a−h)
and x→a+limf(x)=h→0limf(a+h)
Here f(x)=∣2x−10∣+2
It can be written as,f(x)=(2x−10)+2;when x>5
=−(2x−10)+2;when x<5
=2;when x=5
According to the problem,
x→5−limf(x)=h→0limf(5−h)
=h→0lim[−[2(5−h)−10]]+2
=h→0lim(2h+2)
=2
x→5+limf(x)=h→0limf(5+h)
=h→0lim[2(5+h)−10]+2
=h→0lim(2h+2)
=2
And f(5)=2
∴f(x) is continuous at x=5 .
b) A function f(x) is said to be differentiable at x=a, iff x→alim[f(x)−f(a)]/(x−a) exists finite.
⟹ x→a−lim[f(x)−f(a)]/(x−a)=x→a+lim[f(x)−f(a)]/(x−a)
⟹h→0lim[f(a−h)−f(a)]/(−h)=h→0lim[f(a+h)−f(a)]/(h)
Now,
x→5−lim[f(x)−f(5)]/(x−5)
=h→0lim[f(5−h)−f(5)]/(−h)
=h→0lim[(2h+2)−2]/(−h)
=h→0lim(−2)=−2
x→5+lim[f(x)−f(5)]/(x−5)
=h→0lim[f(5+h)−f(5)]/(h)
=h→0lim[(2h+2)−2]/(h)
=h→0lim(2)=2
∴ x→5−lim[f(x)−f(5)]/(x−5) = x→5+lim[f(x)−f(5)]/(x−5)
Therefore f(x) is not differentiable at x=5.
Comments
Leave a comment