Answer to Question #150315 in Calculus for stefanus weyulu

Question #150315
Let f(x) = |2x − 10| + 2 .
a) Show that f is continuous at x = 5.
b) Show that f is not differentiable at x = 5.
1
Expert's answer
2020-12-13T19:27:29-0500

a) A function f(x)f(x) is said to be continuous at a point x=ax=a of its domain,iff limxaf(x)=f(a)\displaystyle {\lim_{x\to a}}f(x)=f(a)

    limxaf(x)=limxa+f(x)=f(a)\implies \displaystyle {\lim_{x\to a^-}}f(x)=\displaystyle {\lim_{x\to a^+}}f(x)=f(a)

We know that, limxaf(x)=limh0f(ah)\displaystyle {\lim_{x\to a^-}}f(x)=\displaystyle {\lim_{h\to 0}}f(a-h)

and limxa+f(x)=limh0f(a+h)\displaystyle {\lim_{x\to a^+}}f(x)=\displaystyle {\lim_{h\to 0}}f(a+h)

Here f(x)=2x10+2f(x)=|2x-10|+2

It can be written as,f(x)=(2x10)+2;whenf(x)=(2x-10)+2; when x>5x>5

=(2x10)+2;when=-(2x-10)+2; when x<5x<5

=2;when=2;when x=5x=5

According to the problem,

limx5f(x)=limh0f(5h)\displaystyle {\lim_{x\to 5^-}}f(x)=\displaystyle {\lim_{h\to 0}}f(5-h)

=limh0[[2(5h)10]]+2=\displaystyle {\lim_{h\to 0}}[-[2(5-h)-10]]+2

=limh0(2h+2)=\displaystyle {\lim_{h\to 0}}(2h+2)

=2=2

limx5+f(x)=limh0f(5+h)\displaystyle {\lim_{x \to 5^+}}f(x)=\displaystyle {\lim_{h \to 0}}f(5+h)

=limh0[2(5+h)10]+2=\displaystyle {\lim_{h\to 0}} [2(5+h)-10]+2

=limh0(2h+2)=\displaystyle {\lim_{h\to 0}}(2h+2)

=2=2

And f(5)=2f(5)=2

f(x)\therefore f(x) is continuous at x=5x=5 .


b) A function f(x) is said to be differentiable at x=a,x=a, iff limxa[f(x)f(a)]/(xa)\displaystyle {\lim_{x\to a}}[f(x)-f(a)]/(x-a) exists finite.

    \implies limxa[f(x)f(a)]/(xa)=limxa+[f(x)f(a)]/(xa)\displaystyle {\lim_{x\to a^-}}[f(x)-f(a)]/(x-a)=\displaystyle {\lim_{x\to a^+}}[f(x)-f(a)]/(x-a)

    limh0[f(ah)f(a)]/(h)=limh0[f(a+h)f(a)]/(h)\implies \displaystyle {\lim_{h\to 0}}[f(a-h)-f(a)]/(-h)= \displaystyle {\lim_{h\to 0}}[f(a+h)-f(a)]/(h)

Now,

limx5[f(x)f(5)]/(x5)\displaystyle {\lim_{x\to 5^-}}[f(x)-f(5)]/(x-5)

=limh0[f(5h)f(5)]/(h)=\displaystyle {\lim_{h\to 0}}[f(5-h)-f(5)]/(-h)

=limh0[(2h+2)2]/(h)=\displaystyle {\lim_{h\to 0}}[(2h+2)-2]/(-h)

=limh0(2)=2=\displaystyle {\lim_{h\to 0}}(-2)=-2

limx5+[f(x)f(5)]/(x5)\displaystyle {\lim_{x\to 5^+}}[f(x)-f(5)]/(x-5)

=limh0[f(5+h)f(5)]/(h)=\displaystyle {\lim_{h\to 0}}[f(5+h)-f(5)]/(h)

=limh0[(2h+2)2]/(h)=\displaystyle {\lim_{h\to 0}}[(2h+2)-2]/(h)

=limh0(2)=2=\displaystyle {\lim_{h\to 0}}(2)=2

\therefore limx5[f(x)f(5)]/(x5)\displaystyle {\lim_{x\to 5^-}}[f(x)-f(5)]/(x-5) \neq limx5+[f(x)f(5)]/(x5)\displaystyle {\lim_{x\to 5^+}}[f(x)-f(5)]/(x-5)

Therefore f(x)f(x) is not differentiable at x=5x=5.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment