a) A function "f(x)" is said to be continuous at a point "x=a" of its domain,iff "\\displaystyle {\\lim_{x\\to a}}f(x)=f(a)"
"\\implies \\displaystyle {\\lim_{x\\to a^-}}f(x)=\\displaystyle {\\lim_{x\\to a^+}}f(x)=f(a)"
We know that, "\\displaystyle {\\lim_{x\\to a^-}}f(x)=\\displaystyle {\\lim_{h\\to 0}}f(a-h)"
and "\\displaystyle {\\lim_{x\\to a^+}}f(x)=\\displaystyle {\\lim_{h\\to 0}}f(a+h)"
Here "f(x)=|2x-10|+2"
It can be written as,"f(x)=(2x-10)+2; when" "x>5"
"=-(2x-10)+2; when" "x<5"
"=2;when" "x=5"
According to the problem,
"\\displaystyle {\\lim_{x\\to 5^-}}f(x)=\\displaystyle {\\lim_{h\\to 0}}f(5-h)"
"=\\displaystyle {\\lim_{h\\to 0}}[-[2(5-h)-10]]+2"
"=\\displaystyle {\\lim_{h\\to 0}}(2h+2)"
"=2"
"\\displaystyle {\\lim_{x \\to 5^+}}f(x)=\\displaystyle {\\lim_{h \\to 0}}f(5+h)"
"=\\displaystyle {\\lim_{h\\to 0}} [2(5+h)-10]+2"
"=\\displaystyle {\\lim_{h\\to 0}}(2h+2)"
"=2"
And "f(5)=2"
"\\therefore f(x)" is continuous at "x=5" .
b) A function f(x) is said to be differentiable at "x=a," iff "\\displaystyle {\\lim_{x\\to a}}[f(x)-f(a)]\/(x-a)" exists finite.
"\\implies" "\\displaystyle {\\lim_{x\\to a^-}}[f(x)-f(a)]\/(x-a)=\\displaystyle {\\lim_{x\\to a^+}}[f(x)-f(a)]\/(x-a)"
"\\implies \\displaystyle {\\lim_{h\\to 0}}[f(a-h)-f(a)]\/(-h)= \\displaystyle {\\lim_{h\\to 0}}[f(a+h)-f(a)]\/(h)"
Now,
"\\displaystyle {\\lim_{x\\to 5^-}}[f(x)-f(5)]\/(x-5)"
"=\\displaystyle {\\lim_{h\\to 0}}[f(5-h)-f(5)]\/(-h)"
"=\\displaystyle {\\lim_{h\\to 0}}[(2h+2)-2]\/(-h)"
"=\\displaystyle {\\lim_{h\\to 0}}(-2)=-2"
"\\displaystyle {\\lim_{x\\to 5^+}}[f(x)-f(5)]\/(x-5)"
"=\\displaystyle {\\lim_{h\\to 0}}[f(5+h)-f(5)]\/(h)"
"=\\displaystyle {\\lim_{h\\to 0}}[(2h+2)-2]\/(h)"
"=\\displaystyle {\\lim_{h\\to 0}}(2)=2"
"\\therefore" "\\displaystyle {\\lim_{x\\to 5^-}}[f(x)-f(5)]\/(x-5)" "\\neq" "\\displaystyle {\\lim_{x\\to 5^+}}[f(x)-f(5)]\/(x-5)"
Therefore "f(x)" is not differentiable at "x=5".
Comments
Leave a comment