1) From the definition of derivative of a function "f(x)" we know that,
"f'(x)=\\lim_{h\\to0} [f(x+h)-f(x)]\/h" ....(1)
According to the problem given that,
"f(x)=\\pi-\\sqrt{(7x-9)}"
So,"f(x+h)=\\pi-\\sqrt{7(x+h)-9}"
Therefore from (1),we have
"f'(x)=\\lim_{h\\to0}[f(x+h)-f(x)]\/h" "=lim_{h\\to0}[[\\pi-\\sqrt{7(x+h)-9}]-[\\pi-\\sqrt{7x-9}]]\/h"
"=lim_{h\\to0}[\\sqrt{7x-9}-\\sqrt{7(x+h)-9}]\/h"
"=lim_{h\\to0}[(\\sqrt{7x-9}-\\sqrt{7(x+h)-9})\u00d7(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})]\\div[h\u00d7(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})]"
"=lim_{h\\to0}[(7x-9)-(7(x+h)-9)]\\div[h\u00d7(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})]"
"=lim_{h\\to0}(-7h)\/[h\u00d7(\\sqrt{7x-9}+\\sqrt{7(x+h)-9}]"
"=lim_{h\\to0}(-7)\/[\\sqrt{7x-9}+\\sqrt{7(x+h)-9}]"
"=(-7)\/[\\sqrt{7x-9}+\\sqrt{7(x+0)-9}]"
"=(-7)\/[2\u00d7\\sqrt{7x-9}]"
Therefore required "f'(x)=(-7)\/[2\u00d7\\sqrt{7x-9}]"
2)Given that
"g(x)=e^{-5x}+[(1\/x)-tanx]^3.\\sqrt{x^2+1}"
"g'(x)=d\/dx(e^{-5x})+d\/dx[[(1\/x)-tanx]^3.\\sqrt{x^2+1}]"
"=-5.e^{-5x}+[(1\/x)-tanx]^3.d\/dx[\\sqrt{x^2+1}]+\\sqrt{x^2+1}.d\/dx[(1\/x)-tanx]^3"
"=-5.e^{-5x}+[(1\/x)-tanx]^3.[1\/2{\\sqrt{x^2+1}}].d\/dx(x^2+1)+\\sqrt{x^2+1}\u00d73[(1\/x)-tanx]^2.d\/dx[(1\/x)-tanx]"
"=-5.e^{-5x}+[(1\/x)-tanx]^3.[x\/\\sqrt{x^2+1}]+3\\sqrt{x^2+1}\u00d7[(1\/x)-tanx]^2.[(-1\/x^2)-sec^2x]"
Comments
Leave a comment