1) From the definition of derivative of a function f ( x ) f(x) f ( x ) we know that,
f ′ ( x ) = lim h → 0 [ f ( x + h ) − f ( x ) ] / h f'(x)=\lim_{h\to0} [f(x+h)-f(x)]/h f ′ ( x ) = lim h → 0 [ f ( x + h ) − f ( x )] / h ....(1)
According to the problem given that,
f ( x ) = π − ( 7 x − 9 ) f(x)=\pi-\sqrt{(7x-9)} f ( x ) = π − ( 7 x − 9 )
So,f ( x + h ) = π − 7 ( x + h ) − 9 f(x+h)=\pi-\sqrt{7(x+h)-9} f ( x + h ) = π − 7 ( x + h ) − 9
Therefore from (1),we have
f ′ ( x ) = lim h → 0 [ f ( x + h ) − f ( x ) ] / h f'(x)=\lim_{h\to0}[f(x+h)-f(x)]/h f ′ ( x ) = lim h → 0 [ f ( x + h ) − f ( x )] / h = l i m h → 0 [ [ π − 7 ( x + h ) − 9 ] − [ π − 7 x − 9 ] ] / h =lim_{h\to0}[[\pi-\sqrt{7(x+h)-9}]-[\pi-\sqrt{7x-9}]]/h = l i m h → 0 [[ π − 7 ( x + h ) − 9 ] − [ π − 7 x − 9 ]] / h
= l i m h → 0 [ 7 x − 9 − 7 ( x + h ) − 9 ] / h =lim_{h\to0}[\sqrt{7x-9}-\sqrt{7(x+h)-9}]/h = l i m h → 0 [ 7 x − 9 − 7 ( x + h ) − 9 ] / h
= l i m h → 0 [ ( 7 x − 9 − 7 ( x + h ) − 9 ) × ( 7 x − 9 + 7 ( x + h ) − 9 ) ] ÷ [ h × ( 7 x − 9 + 7 ( x + h ) − 9 ) ] =lim_{h\to0}[(\sqrt{7x-9}-\sqrt{7(x+h)-9})×(\sqrt{7x-9}+\sqrt{7(x+h)-9})]\div[h×(\sqrt{7x-9}+\sqrt{7(x+h)-9})] = l i m h → 0 [( 7 x − 9 − 7 ( x + h ) − 9 ) × ( 7 x − 9 + 7 ( x + h ) − 9 )] ÷ [ h × ( 7 x − 9 + 7 ( x + h ) − 9 )]
= l i m h → 0 [ ( 7 x − 9 ) − ( 7 ( x + h ) − 9 ) ] ÷ [ h × ( 7 x − 9 + 7 ( x + h ) − 9 ) ] =lim_{h\to0}[(7x-9)-(7(x+h)-9)]\div[h×(\sqrt{7x-9}+\sqrt{7(x+h)-9})] = l i m h → 0 [( 7 x − 9 ) − ( 7 ( x + h ) − 9 )] ÷ [ h × ( 7 x − 9 + 7 ( x + h ) − 9 )]
= l i m h → 0 ( − 7 h ) / [ h × ( 7 x − 9 + 7 ( x + h ) − 9 ] =lim_{h\to0}(-7h)/[h×(\sqrt{7x-9}+\sqrt{7(x+h)-9}] = l i m h → 0 ( − 7 h ) / [ h × ( 7 x − 9 + 7 ( x + h ) − 9 ]
= l i m h → 0 ( − 7 ) / [ 7 x − 9 + 7 ( x + h ) − 9 ] =lim_{h\to0}(-7)/[\sqrt{7x-9}+\sqrt{7(x+h)-9}] = l i m h → 0 ( − 7 ) / [ 7 x − 9 + 7 ( x + h ) − 9 ]
= ( − 7 ) / [ 7 x − 9 + 7 ( x + 0 ) − 9 ] =(-7)/[\sqrt{7x-9}+\sqrt{7(x+0)-9}] = ( − 7 ) / [ 7 x − 9 + 7 ( x + 0 ) − 9 ]
= ( − 7 ) / [ 2 × 7 x − 9 ] =(-7)/[2×\sqrt{7x-9}] = ( − 7 ) / [ 2 × 7 x − 9 ]
Therefore required f ′ ( x ) = ( − 7 ) / [ 2 × 7 x − 9 ] f'(x)=(-7)/[2×\sqrt{7x-9}] f ′ ( x ) = ( − 7 ) / [ 2 × 7 x − 9 ]
2)Given that
g ( x ) = e − 5 x + [ ( 1 / x ) − t a n x ] 3 . x 2 + 1 g(x)=e^{-5x}+[(1/x)-tanx]^3.\sqrt{x^2+1} g ( x ) = e − 5 x + [( 1/ x ) − t an x ] 3 . x 2 + 1
g ′ ( x ) = d / d x ( e − 5 x ) + d / d x [ [ ( 1 / x ) − t a n x ] 3 . x 2 + 1 ] g'(x)=d/dx(e^{-5x})+d/dx[[(1/x)-tanx]^3.\sqrt{x^2+1}] g ′ ( x ) = d / d x ( e − 5 x ) + d / d x [[( 1/ x ) − t an x ] 3 . x 2 + 1 ]
= − 5. e − 5 x + [ ( 1 / x ) − t a n x ] 3 . d / d x [ x 2 + 1 ] + x 2 + 1 . d / d x [ ( 1 / x ) − t a n x ] 3 =-5.e^{-5x}+[(1/x)-tanx]^3.d/dx[\sqrt{x^2+1}]+\sqrt{x^2+1}.d/dx[(1/x)-tanx]^3 = − 5. e − 5 x + [( 1/ x ) − t an x ] 3 . d / d x [ x 2 + 1 ] + x 2 + 1 . d / d x [( 1/ x ) − t an x ] 3
= − 5. e − 5 x + [ ( 1 / x ) − t a n x ] 3 . [ 1 / 2 x 2 + 1 ] . d / d x ( x 2 + 1 ) + x 2 + 1 × 3 [ ( 1 / x ) − t a n x ] 2 . d / d x [ ( 1 / x ) − t a n x ] =-5.e^{-5x}+[(1/x)-tanx]^3.[1/2{\sqrt{x^2+1}}].d/dx(x^2+1)+\sqrt{x^2+1}×3[(1/x)-tanx]^2.d/dx[(1/x)-tanx] = − 5. e − 5 x + [( 1/ x ) − t an x ] 3 . [ 1/2 x 2 + 1 ] . d / d x ( x 2 + 1 ) + x 2 + 1 × 3 [( 1/ x ) − t an x ] 2 . d / d x [( 1/ x ) − t an x ]
= − 5. e − 5 x + [ ( 1 / x ) − t a n x ] 3 . [ x / x 2 + 1 ] + 3 x 2 + 1 × [ ( 1 / x ) − t a n x ] 2 . [ ( − 1 / x 2 ) − s e c 2 x ] =-5.e^{-5x}+[(1/x)-tanx]^3.[x/\sqrt{x^2+1}]+3\sqrt{x^2+1}×[(1/x)-tanx]^2.[(-1/x^2)-sec^2x] = − 5. e − 5 x + [( 1/ x ) − t an x ] 3 . [ x / x 2 + 1 ] + 3 x 2 + 1 × [( 1/ x ) − t an x ] 2 . [( − 1/ x 2 ) − se c 2 x ]
Comments
Leave a comment