Answer to Question #150239 in Calculus for Luc

Question #150239
1) Let f(x) = π − √7x − 9. Use the definition of the derivative to find f′(x).
2) Differentiate the following function
g(x)=e^-5x + (1/x −tanx)^3 (√x^2 +1)
1
Expert's answer
2020-12-15T07:06:24-0500

1) From the definition of derivative of a function f(x)f(x) we know that,

f(x)=limh0[f(x+h)f(x)]/hf'(x)=\lim_{h\to0} [f(x+h)-f(x)]/h ....(1)

According to the problem given that,

f(x)=π(7x9)f(x)=\pi-\sqrt{(7x-9)}

So,f(x+h)=π7(x+h)9f(x+h)=\pi-\sqrt{7(x+h)-9}

Therefore from (1),we have

f(x)=limh0[f(x+h)f(x)]/hf'(x)=\lim_{h\to0}[f(x+h)-f(x)]/h =limh0[[π7(x+h)9][π7x9]]/h=lim_{h\to0}[[\pi-\sqrt{7(x+h)-9}]-[\pi-\sqrt{7x-9}]]/h

=limh0[7x97(x+h)9]/h=lim_{h\to0}[\sqrt{7x-9}-\sqrt{7(x+h)-9}]/h

=limh0[(7x97(x+h)9)×(7x9+7(x+h)9)]÷[h×(7x9+7(x+h)9)]=lim_{h\to0}[(\sqrt{7x-9}-\sqrt{7(x+h)-9})×(\sqrt{7x-9}+\sqrt{7(x+h)-9})]\div[h×(\sqrt{7x-9}+\sqrt{7(x+h)-9})]

=limh0[(7x9)(7(x+h)9)]÷[h×(7x9+7(x+h)9)]=lim_{h\to0}[(7x-9)-(7(x+h)-9)]\div[h×(\sqrt{7x-9}+\sqrt{7(x+h)-9})]

=limh0(7h)/[h×(7x9+7(x+h)9]=lim_{h\to0}(-7h)/[h×(\sqrt{7x-9}+\sqrt{7(x+h)-9}]

=limh0(7)/[7x9+7(x+h)9]=lim_{h\to0}(-7)/[\sqrt{7x-9}+\sqrt{7(x+h)-9}]

=(7)/[7x9+7(x+0)9]=(-7)/[\sqrt{7x-9}+\sqrt{7(x+0)-9}]

=(7)/[2×7x9]=(-7)/[2×\sqrt{7x-9}]

Therefore required f(x)=(7)/[2×7x9]f'(x)=(-7)/[2×\sqrt{7x-9}]




2)Given that

g(x)=e5x+[(1/x)tanx]3.x2+1g(x)=e^{-5x}+[(1/x)-tanx]^3.\sqrt{x^2+1}

g(x)=d/dx(e5x)+d/dx[[(1/x)tanx]3.x2+1]g'(x)=d/dx(e^{-5x})+d/dx[[(1/x)-tanx]^3.\sqrt{x^2+1}]

=5.e5x+[(1/x)tanx]3.d/dx[x2+1]+x2+1.d/dx[(1/x)tanx]3=-5.e^{-5x}+[(1/x)-tanx]^3.d/dx[\sqrt{x^2+1}]+\sqrt{x^2+1}.d/dx[(1/x)-tanx]^3

=5.e5x+[(1/x)tanx]3.[1/2x2+1].d/dx(x2+1)+x2+1×3[(1/x)tanx]2.d/dx[(1/x)tanx]=-5.e^{-5x}+[(1/x)-tanx]^3.[1/2{\sqrt{x^2+1}}].d/dx(x^2+1)+\sqrt{x^2+1}×3[(1/x)-tanx]^2.d/dx[(1/x)-tanx]

=5.e5x+[(1/x)tanx]3.[x/x2+1]+3x2+1×[(1/x)tanx]2.[(1/x2)sec2x]=-5.e^{-5x}+[(1/x)-tanx]^3.[x/\sqrt{x^2+1}]+3\sqrt{x^2+1}×[(1/x)-tanx]^2.[(-1/x^2)-sec^2x]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment