The unit tangent vector "\\overrightarrow{T}" , the unit normal vector "\\overrightarrow{N}" and the unit binormal vector "\\overrightarrow{B}" are three mutually perpendicular vectors used to describe a curve in two or three dimensions. This moving coordinate system is attached to the curve and describes the shape of the curve independent of any parameterization.
If the curve is given parametrically by
"x=x(t)\\quad\\quad y=y(t)"
the position, unit tangent, unit normal, and unit binormal vectors are
"\\overrightarrow{r}(t)=x(t)\\cdot \\overrightarrow{i}+y(t)\\cdot \\overrightarrow{j}\\\\[0.3cm]\n\\overrightarrow{T}=\\frac{\\overrightarrow{r}'(t)}{\\left|\\overrightarrow{r}'(t)\\right|} \\\\[0.3cm]\n\\overrightarrow{N}=\\frac{\\overrightarrow{T}'(t)}{\\left|\\overrightarrow{T}'(t)\\right|} \\\\[0.3cm]\n\\overrightarrow{B}=\\overrightarrow{T}(t)\\times\\overrightarrow{N}\\\\[0.3cm]" 1 case :
"\\overrightarrow{r}(t)=\\frac{t^3}{3}\\cdot\\overrightarrow{i}+\\frac{t^2}{2}\\cdot\\overrightarrow{j},\\,\\,\\,t>0\\\\[0.3cm]\n\\overrightarrow{r}'(t)=\\frac{d}{dt}\\left(\\frac{t^3}{3}\\cdot\\overrightarrow{i}+\\frac{t^2}{2}\\cdot\\overrightarrow{j}\\right)=\\frac{3t^2}{3}\\cdot\\overrightarrow{i}+\\frac{2t}{2}\\cdot\\overrightarrow{j}\\\\[0.3cm]\n\\boxed{\\overrightarrow{r}'(t)=t^2\\cdot\\overrightarrow{i}+t\\cdot\\overrightarrow{j}}\\\\[0.3cm]\n\\left|\\overrightarrow{r}'(t)\\right|=\\sqrt{(t^2)^2+t^2}=\\sqrt{t^2\\cdot\\left(t^2+1\\right)}=|t|\\cdot\\sqrt{t^2+1}\\\\[0.3cm]\n\\left|\\overrightarrow{r}'(t)\\right|=[t>0]=t\\cdot\\sqrt{t^2+1}\\\\[0.3cm]\n\\overrightarrow{T}(t)=\\frac{\\overrightarrow{r}'(t)}{\\left|\\overrightarrow{r}'(t)\\right|}=\\frac{t^2\\cdot\\overrightarrow{i}+t\\cdot\\overrightarrow{j}}{t\\cdot\\sqrt{t^2+1}}=\\frac{t^2\\cdot\\overrightarrow{i}}{t\\cdot\\sqrt{t^2+1}}+\\frac{t\\cdot\\overrightarrow{j}}{t\\cdot\\sqrt{t^2+1}}\\\\[0.3cm]\n\\boxed{\\overrightarrow{T}(t)=\\frac{t\\cdot\\overrightarrow{i}}{\\sqrt{t^2+1}}+\\frac{\\overrightarrow{j}}{\\sqrt{t^2+1}}}\\\\[0.3cm]\n\\overrightarrow{T}'(t)=\\frac{d}{dt}\\left(\\frac{t\\cdot\\overrightarrow{i}}{\\sqrt{t^2+1}}+\\frac{\\overrightarrow{j}}{\\sqrt{t^2+1}}\\right)=\\\\[0.3cm]\n=\\left(\\frac{1}{\\sqrt{t^2+1}}+t\\cdot\\left(-\\frac{1}{2}\\cdot\\frac{2t}{\\left(t^2+1\\right)^{3\/2}}\\right)\\right)\\cdot\\overrightarrow{i}+\\left(-\\frac{1}{2}\\cdot\\frac{2t}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{j}=\\\\[0.3cm]\n=\\left(\\frac{t^2+1-t^2}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{i}+\\left(-\\frac{t}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{j}=\\\\[0.3cm]\n=\\left(\\frac{1}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{i}+\\left(-\\frac{t}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{j}\\\\[0.3cm]\n\\left|\\overrightarrow{T}(t)\\right|=\\sqrt{\\left(\\frac{1}{\\left(t^2+1\\right)^{3\/2}}\\right)^2+\\left(\\frac{t}{\\left(t^2+1\\right)^{3\/2}}\\right)^2}=\\\\[0.3cm]\n=\\sqrt{\\frac{t^2+1}{\\left(t^2+1\\right)^3}}=\\sqrt{\\frac{1}{\\left(t^2+1\\right)^2}}=\\frac{1}{t^2+1}\\longrightarrow\\frac{1}{\\left|\\overrightarrow{T}'(t)\\right|}=(t^2+1)\\\\[0.3cm]\n\\overrightarrow{N}(t)=\\frac{\\overrightarrow{T}'(t)}{\\left|\\overrightarrow{T}'(t)\\right|}=(t^2+1)\\cdot\\left(\\left(\\frac{1}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{i}+\\left(-\\frac{t}{\\left(t^2+1\\right)^{3\/2}}\\right)\\cdot\\overrightarrow{j}\\right)\\\\[0.3cm]\n=\\left(\\frac{1}{\\left(t^2+1\\right)^{1\/2}}\\right)\\cdot\\overrightarrow{i}+\\left(-\\frac{t}{\\left(t^2+1\\right)^{1\/2}}\\right)\\cdot\\overrightarrow{j}\\\\[0.3cm]\n\\boxed{\\overrightarrow{N}(t)=\\frac{\\overrightarrow{i}}{\\sqrt{t^2+1}}-\\frac{t\\cdot\\overrightarrow{j}}{\\sqrt{t^2+1}}}\\\\[0.3cm]\n\\overrightarrow{B}=\\overrightarrow{T}\\times\\overrightarrow{N}=\\left|\\begin{array}{ccc}\n\\overrightarrow{i}&\\overrightarrow{j}&\\overrightarrow{k}\\\\\nT_x&T_y&T_z=0\\\\\nN_x&N_y&N_z=0\n\\end{array}\\right|=\\overrightarrow{k}\\cdot(T_xN_y-T_yN_x)=\\\\[0.3cm]\n=\\overrightarrow{k}\\cdot\\left(\\left(\\frac{t}{\\sqrt{t^2+1}}\\right)\\cdot\\left(\\frac{-t}{\\sqrt{t^2+1}}\\right)-\\left(\\frac{1}{\\sqrt{t^2+1}}\\right)\\cdot\\left(\\frac{1}{\\sqrt{t^2+1}}\\right)\\right)=\\\\[0.3cm]\n=\\overrightarrow{k}\\cdot\\left(\\frac{-(t^2+1)}{t^2+1}\\right)=-1\\cdot\\overrightarrow{k}\\\\[0.3cm]\n\\boxed{\\overrightarrow{B}=-1\\cdot\\overrightarrow{k}}"
2 case :
"\\overrightarrow{r}(t)=\\frac{t^3}{3}\\cdot\\overrightarrow{i}+\\frac{t^2}{2}\\cdot\\overrightarrow{j},\\,\\,\\,t\\ge0\\\\[0.3cm]\n\\overrightarrow{r}'(t)=\\frac{d}{dt}\\left(\\frac{t^3}{3}\\cdot\\overrightarrow{i}+\\frac{t^2}{2}\\cdot\\overrightarrow{j}\\right)=\\frac{3t^2}{3}\\cdot\\overrightarrow{i}+\\frac{2t}{2}\\cdot\\overrightarrow{j}\\\\[0.3cm]\n\\boxed{\\overrightarrow{r}'(t)=t^2\\cdot\\overrightarrow{i}+t\\cdot\\overrightarrow{j}}\\\\[0.3cm]\n\\left|\\overrightarrow{r}'(t)\\right|=\\sqrt{(t^2)^2+t^2}=\\sqrt{t^2\\cdot\\left(t^2+1\\right)}=|t|\\cdot\\sqrt{t^2+1}\\\\[0.3cm]\n\\left|\\overrightarrow{r}'(t)\\right|=[t\\ge0]=t\\cdot\\sqrt{t^2+1}\\\\[0.3cm]" There is a problem with the parameter value "t=0" , since
"\\overrightarrow{r}'(0)=0^2\\cdot\\overrightarrow{i}+0\\cdot\\overrightarrow{j}\\\\[0.3cm]\n\\left|\\overrightarrow{r}'(0)\\right|=0\\cdot\\sqrt{0^2+1}=0\\\\[0.3cm]\n\\overrightarrow{T}(0)=\\frac{0}{0}\\cdot\\overrightarrow{i}+\\frac{0}{0}\\cdot\\overrightarrow{j}-\\text{formal entry}"
It means that "\\nexists\\overrightarrow{T}(0)" and as a consequence "\\nexists\\overrightarrow{N}(0)" and "\\nexists\\overrightarrow{B}(0)" .
ANSWER
"\\overrightarrow{r}(t)=\\frac{t^3}{3}\\cdot\\overrightarrow{i}+\\frac{t^2}{2}\\cdot\\overrightarrow{j},\\,\\,\\,t>0\\\\[0.3cm]\n\\overrightarrow{T}(t)=\\frac{t\\cdot\\overrightarrow{i}}{\\sqrt{t^2+1}}+\\frac{\\overrightarrow{j}}{\\sqrt{t^2+1}}\\\\[0.3cm]\n\\overrightarrow{N}(t)=\\frac{\\overrightarrow{i}}{\\sqrt{t^2+1}}-\\frac{t\\cdot\\overrightarrow{j}}{\\sqrt{t^2+1}}\\\\[0.3cm]\n\\overrightarrow{B}=-1\\cdot\\overrightarrow{k}\\\\[0.3cm]\n\\overrightarrow{r}(t)=\\frac{t^3}{3}\\cdot\\overrightarrow{i}+\\frac{t^2}{2}\\cdot\\overrightarrow{j},\\,\\,\\,t\\ge0\\\\[0.3cm]\n\\overrightarrow{T}(t)=\\frac{t\\cdot\\overrightarrow{i}}{\\sqrt{t^2+1}}+\\frac{\\overrightarrow{j}}{\\sqrt{t^2+1}},\\,\\,\\,t>0\\,\\,\\,\\text{and}\\,\\,\\,\\nexists\\overrightarrow{T}(0)\\\\[0.3cm]\n\\overrightarrow{N}(t)=\\frac{\\overrightarrow{i}}{\\sqrt{t^2+1}}-\\frac{t\\cdot\\overrightarrow{j}}{\\sqrt{t^2+1}},\\,\\,\\,t>0\\,\\,\\,\\text{and}\\,\\,\\,\\nexists\\overrightarrow{N}(0)\\\\[0.3cm]\n\\overrightarrow{B}=-1\\cdot\\overrightarrow{k},\\,\\,\\,t>0\\,\\,\\,\\text{and}\\,\\,\\,\\nexists\\overrightarrow{B}(0)"
Comments
Leave a comment