Question #149703
Prove that if y= √x + 1/4 sin(2x^2)
dy/dx= (1/2√x) + 2xcos(2x)^2
1
Expert's answer
2020-12-13T16:40:22-0500

Solution: Given that, y=x+14sin(2x2)y=\sqrt{x}+\frac{1}{4} sin (2x^2)

Now, we differentiate with respect to xx

dydx=ddx[x+14sin(2x2)]\therefore \frac{dy}{dx}=\frac{d}{dx}[\sqrt{x}+\frac{1}{4} sin(2x^2)]


=ddx[x]+ddx[14sin(2x2)]= \frac{d}{dx}[\sqrt{x}]+\frac{d}{dx}[\frac{1}{4} sin(2x^2)]


=ddx[x]+[14ddxsin(2x2)]= \frac{d}{dx}[\sqrt{x}]+[\frac{1}{4} \frac{d}{dx}sin(2x^2)]


=ddx[x12]+[14ddxsin(2x2)]= \frac{d}{dx}[x^\frac{1}{2}]+[\frac{1}{4} \frac{d}{dx}sin(2x^2)]

=12x121+[14cos(2x2)ddx(2x2)][Sinceddxxn=nxn1andddxsinx=cosx]= \frac{1}{2}x^{\frac{1}{2}-1}+[\frac{1}{4} cos(2x^2)\frac{d}{dx}(2x^2)] [Since \frac{d}{dx}x^n=nx^{n-1} and \frac{d}{dx} sin x= cos x ]

=12x12+[14cos(2x2).2.ddx(x2)]= \frac{1}{2}x^{-\frac{1}{2}}+[\frac{1}{4} cos(2x^2).2.\frac{d}{dx}(x^2)]


=12x12+[142cos(2x2).2.2x]= \frac{1}{2x^{\frac{1}{2}}}+[\frac{1}{4}2 cos(2x^2).2.2x]

=12x+[142cos(2x2).4x]= \frac{1}{2\sqrt{x}}+[\frac{1}{4} 2cos(2x^2).4x]


=12x+8xcos(2x2)4= \frac{1}{2\sqrt{x}}+\frac{ 8xcos(2x^2)}{4} [Cancel out 4 with 4]


dydx=12x+2xcos(2x2)\therefore\frac{dy}{dx}= \frac {1}{2\sqrt{x}}+2x cos(2x^2)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS