Solution: Given that, "y=\\sqrt{x}+\\frac{1}{4} sin (2x^2)"
Now, we differentiate with respect to "x"
"\\therefore \\frac{dy}{dx}=\\frac{d}{dx}[\\sqrt{x}+\\frac{1}{4} sin(2x^2)]"
"= \\frac{d}{dx}[\\sqrt{x}]+\\frac{d}{dx}[\\frac{1}{4} sin(2x^2)]"
"= \\frac{d}{dx}[\\sqrt{x}]+[\\frac{1}{4} \\frac{d}{dx}sin(2x^2)]"
"= \\frac{d}{dx}[x^\\frac{1}{2}]+[\\frac{1}{4} \\frac{d}{dx}sin(2x^2)]"
"= \\frac{1}{2}x^{\\frac{1}{2}-1}+[\\frac{1}{4} cos(2x^2)\\frac{d}{dx}(2x^2)] [Since \\frac{d}{dx}x^n=nx^{n-1} and \\frac{d}{dx} sin x= cos x ]"
"= \\frac{1}{2}x^{-\\frac{1}{2}}+[\\frac{1}{4} cos(2x^2).2.\\frac{d}{dx}(x^2)]"
"= \\frac{1}{2x^{\\frac{1}{2}}}+[\\frac{1}{4}2 cos(2x^2).2.2x]"
"= \\frac{1}{2\\sqrt{x}}+[\\frac{1}{4} 2cos(2x^2).4x]"
"= \\frac{1}{2\\sqrt{x}}+\\frac{ 8xcos(2x^2)}{4}" [Cancel out 4 with 4]
"\\therefore\\frac{dy}{dx}= \\frac {1}{2\\sqrt{x}}+2x cos(2x^2)"
Comments
Leave a comment