Solution: Given that, y = x + 1 4 s i n ( 2 x 2 ) y=\sqrt{x}+\frac{1}{4} sin (2x^2) y = x + 4 1 s in ( 2 x 2 )
Now, we differentiate with respect to x x x
∴ d y d x = d d x [ x + 1 4 s i n ( 2 x 2 ) ] \therefore \frac{dy}{dx}=\frac{d}{dx}[\sqrt{x}+\frac{1}{4} sin(2x^2)] ∴ d x d y = d x d [ x + 4 1 s in ( 2 x 2 )]
= d d x [ x ] + d d x [ 1 4 s i n ( 2 x 2 ) ] = \frac{d}{dx}[\sqrt{x}]+\frac{d}{dx}[\frac{1}{4} sin(2x^2)] = d x d [ x ] + d x d [ 4 1 s in ( 2 x 2 )]
= d d x [ x ] + [ 1 4 d d x s i n ( 2 x 2 ) ] = \frac{d}{dx}[\sqrt{x}]+[\frac{1}{4} \frac{d}{dx}sin(2x^2)] = d x d [ x ] + [ 4 1 d x d s in ( 2 x 2 )]
= d d x [ x 1 2 ] + [ 1 4 d d x s i n ( 2 x 2 ) ] = \frac{d}{dx}[x^\frac{1}{2}]+[\frac{1}{4} \frac{d}{dx}sin(2x^2)] = d x d [ x 2 1 ] + [ 4 1 d x d s in ( 2 x 2 )]
= 1 2 x 1 2 − 1 + [ 1 4 c o s ( 2 x 2 ) d d x ( 2 x 2 ) ] [ S i n c e d d x x n = n x n − 1 a n d d d x s i n x = c o s x ] = \frac{1}{2}x^{\frac{1}{2}-1}+[\frac{1}{4} cos(2x^2)\frac{d}{dx}(2x^2)] [Since \frac{d}{dx}x^n=nx^{n-1} and \frac{d}{dx} sin x= cos x ] = 2 1 x 2 1 − 1 + [ 4 1 cos ( 2 x 2 ) d x d ( 2 x 2 )] [ S in ce d x d x n = n x n − 1 an d d x d s in x = cos x ]
= 1 2 x − 1 2 + [ 1 4 c o s ( 2 x 2 ) . 2. d d x ( x 2 ) ] = \frac{1}{2}x^{-\frac{1}{2}}+[\frac{1}{4} cos(2x^2).2.\frac{d}{dx}(x^2)] = 2 1 x − 2 1 + [ 4 1 cos ( 2 x 2 ) .2. d x d ( x 2 )]
= 1 2 x 1 2 + [ 1 4 2 c o s ( 2 x 2 ) . 2.2 x ] = \frac{1}{2x^{\frac{1}{2}}}+[\frac{1}{4}2 cos(2x^2).2.2x] = 2 x 2 1 1 + [ 4 1 2 cos ( 2 x 2 ) .2.2 x ]
= 1 2 x + [ 1 4 2 c o s ( 2 x 2 ) . 4 x ] = \frac{1}{2\sqrt{x}}+[\frac{1}{4} 2cos(2x^2).4x] = 2 x 1 + [ 4 1 2 cos ( 2 x 2 ) .4 x ]
= 1 2 x + 8 x c o s ( 2 x 2 ) 4 = \frac{1}{2\sqrt{x}}+\frac{ 8xcos(2x^2)}{4} = 2 x 1 + 4 8 x cos ( 2 x 2 ) [Cancel out 4 with 4]
∴ d y d x = 1 2 x + 2 x c o s ( 2 x 2 ) \therefore\frac{dy}{dx}= \frac {1}{2\sqrt{x}}+2x cos(2x^2) ∴ d x d y = 2 x 1 + 2 x cos ( 2 x 2 )
Comments