Solution: Given that, y=x+41sin(2x2)
Now, we differentiate with respect to x
∴dxdy=dxd[x+41sin(2x2)]
=dxd[x]+dxd[41sin(2x2)]
=dxd[x]+[41dxdsin(2x2)]
=dxd[x21]+[41dxdsin(2x2)]
=21x21−1+[41cos(2x2)dxd(2x2)][Sincedxdxn=nxn−1anddxdsinx=cosx]
=21x−21+[41cos(2x2).2.dxd(x2)]
=2x211+[412cos(2x2).2.2x]
=2x1+[412cos(2x2).4x]
=2x1+48xcos(2x2) [Cancel out 4 with 4]
∴dxdy=2x1+2xcos(2x2)
Comments