Question #149129
Let f(x) = |2x − 10| + 2 .
a) Show that f is continuous at x = 5
b) Show that f is not differentiable at x = 5
1
Expert's answer
2020-12-08T06:48:35-0500

a)

Let ϵ>0\epsilon>0 be given. We must find a δ=δ(ϵ)>0\delta=\delta(\epsilon) >0 such that ifx5<δ|x-5|<\delta then, f(x)f(5)<ϵ.|f(x)-f(5)|<\epsilon.

Now,


f(x)f(5)=2x10+22=2x10=2x5<2δ=ϵifδ=ϵ/2    f(x)f(5)<ϵ|f(x)-f(5)|=||2x-10|+2-2|=||2x-10||=2|x-5|<2\delta =\epsilon \, \text{if} \,\delta=\epsilon/2\\ \implies |f(x)-f(5)|<\epsilon

Hence, given ϵ>0,\epsilon>0, choose δ=ϵ/2.\delta=\epsilon/2. Then, f(x)f(5)<ϵ|f(x)-f(5)|<\epsilon whenever x5<δ,|x-5|<\delta, so that f is continuous at x=5.x=5.


b)


To show that f is not differentiable at x=5, we must show that the left hand derivative is not equal to the right hand derivative at 5. That is, f(5)f(5+).f'(5^-) \neq f'(5^+).

f(5)=limx5f(x)f(5)x5=limh0f(5h)25h5=limh02+2h2h=limh02hh=2f'(5^-)=\lim_{x \to 5^-}\frac{f(x)-f(5)}{x-5}=\lim_{h \to 0}\frac{f(5-h)-2}{5-h-5}=\lim_{h \to 0}\frac{2+2h-2}{-h}=\lim_{h \to 0}\frac{2h}{-h}=-2

f(5+)=limx5+f(x)f(5)x5=limh0f(5+h)25+h5=limh02+2h2h=limh02hh=2f'(5^+)=\lim_{x \to 5^+}\frac{f(x)-f(5)}{x-5}=\lim_{h \to 0}\frac{f(5+h)-2}{5+h-5}=\lim_{h \to 0}\frac{2+2h-2}{h}=\lim_{h \to 0}\frac{2h}{h}=2


22    f(5)f(5+)-2\neq2 \implies f'(5^-)\neq f(5^+)

Hence, f is not differentiable at x=5.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS