a) Marginal propensity to save (MPS)
The marginal propensity to save (MPS) function is expressed as the derivative of the savings (S) function with respect to disposable income (Y).
MPS=dYdS=0.06Y−2 When Y=40
MPS=0.06(40)−2=0.4
1=MPC+MPS
MPC=1−MPS=1−(0.06Y−2)
=3−0.06Y When Y=40
MPC=1−0.4=0.6
When Y=40,MPS=0.4,MPC=0.6
b) Find the second derivatives of these functions:
i)
y′=10x+350
y′′=10 ii)
y′=x2+42x
y′′=2⋅(x2+4)2x2+4−2x2=−2⋅(x2+4)2x2−4
c)
y′=6x+30 Critical number(s)
y′=0=>6x+30=0=>x=−5 Critical number: −5
y′′=6>0 y(−5)=3(−5)2+30(−5)+605=530
By the Second DerivativeTest the function y has the relative minimum with the value of 530 at x=−5.
The function y has no the relative maximum.
d)
y′=2x−2Critical number(s)
y′=0=>2x−2=0=>x=1Critical number: 1
y(0)=(0)2−2(0)+3=3
y(3)=(3)2−2(3)+3=6
y(1)=(1)2−2(1)+3=2
2<3<6The function y has the absolute maximum with the value of 6 at x=3 on [0,3].
The function y has the absolute minimum with the value of 2 at x=1 on [0,3].
Comments