Question #149694
a) If the saving function is given by S° = 0.03Y^2 - 2Y + 150
Calculate the values of marginal propensity to save (MPS) and marginal propensity to
consume (MPC) when Y=40.

b) Find the second derivatives of these functions:
i) y=5x^2+350x-120 [3 marks]

ii) y= ln( x^2+4) [3 marks]

c) Find the relative maximum and minimum fory=3x^2+30x+605. [4 marks]
d) Find the absolute maximum and minimum for y=x^2-2x+3 between x=0 and x=3. [4 marks]
1
Expert's answer
2020-12-14T10:33:07-0500

a) Marginal propensity to save (MPS)

The marginal propensity to save (MPS) function is expressed as the derivative of the savings (S) function with respect to disposable income (Y).


MPS=dSdY=0.06Y2MPS=\dfrac{dS}{dY}=0.06Y-2

When Y=40Y=40


MPS=0.06(40)2=0.4MPS=0.06(40)-2=0.4

1=MPC+MPS1=MPC+MPS

MPC=1MPS=1(0.06Y2)MPC=1-MPS=1-(0.06Y-2)


=30.06Y=3-0.06Y

When Y=40Y=40


MPC=10.4=0.6MPC=1-0.4=0.6

When Y=40,MPS=0.4,MPC=0.6Y=40, MPS=0.4, MPC=0.6


b) Find the second derivatives of these functions:

i)

y=10x+350y'=10x+350

y=10y''=10

ii)

y=2xx2+4y'=\dfrac{2x}{x^2+4}

y=2x2+42x2(x2+4)2=2x24(x2+4)2y''=2\cdot\dfrac{x^2+4-2x^2}{(x^2+4)^2}=-2\cdot\dfrac{x^2-4}{(x^2+4)^2}


c)


y=6x+30y'=6x+30

Critical number(s)


y=0=>6x+30=0=>x=5y'=0=>6x+30=0=>x=-5

Critical number: 5-5


y=6>0y''=6>0

y(5)=3(5)2+30(5)+605=530y(-5)=3(-5)^2+30(-5)+605=530

By the Second DerivativeTest the function yy has the relative minimum with the value of 530530 at x=5.x=-5.

The function yy has no the relative maximum.


d)


y=2x2y'=2x-2

Critical number(s)


y=0=>2x2=0=>x=1y'=0=>2x-2=0=>x=1

Critical number: 11

y(0)=(0)22(0)+3=3y(0)=(0)^2-2(0)+3=3

y(3)=(3)22(3)+3=6y(3)=(3)^2-2(3)+3=6

y(1)=(1)22(1)+3=2y(1)=(1)^2-2(1)+3=2


2<3<62<3<6

The function yy has the absolute maximum with the value of 66 at x=3x=3 on [0,3].[0, 3].

The function yy has the absolute minimum with the value of 22 at x=1x=1 on [0,3].[0, 3].



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS