Question #149098
The velocity vector in a fluid flow is given by V = 2x^3 i - 5x^2 y j + 4t k. Find the velocity and acceleration of a fluid particle at (1, 2, 3) at time , t = 1.
1
Expert's answer
2020-12-13T16:34:12-0500

Velocity filed is given as....

V=2x3i^5x2yj^+4tk^dV(x,y,z,t)=(Vx)y,z,tdx+(Vy)x,z,tdy+(Vz)y,x,tdz+(Vt)x,y,zdtdV(x,y,z,t)dt=(Vx)y,z,tdxdt+(Vy)x,z,tdydt+(Vz)y,x,tdzdt+(Vt)x,y,za=dV(x,y,z,t)dt=(Vx)y,z,tVx+(Vy)x,z,tVy+(Vz)y,x,tVz+(Vt)x,y,zV=2x^3\hat{i}-5x^2y\hat{j}+4t\hat{k}\\ dV(x,y,z,t)=\bigg( \cfrac{\partial V}{\partial x} \bigg)_{y,z,t}dx+\bigg( \cfrac{\partial V}{\partial y} \bigg)_{x,z,t}dy+\bigg( \cfrac{\partial V}{\partial z} \bigg)_{y,x,t}dz+\bigg( \cfrac{\partial V}{\partial t} \bigg)_{x,y,z}dt\\ \cfrac{dV(x,y,z,t)}{dt}=\bigg( \cfrac{\partial V}{\partial x} \bigg)_{y,z,t}\cfrac{dx}{dt}+\bigg( \cfrac{\partial V}{\partial y} \bigg)_{x,z,t}\cfrac{dy}{dt}+\bigg( \cfrac{\partial V}{\partial z} \bigg)_{y,x,t}\frac{dz}{dt}+\bigg( \cfrac{\partial V}{\partial t} \bigg)_{x,y,z}\\ \vec{a}=\cfrac{dV(x,y,z,t)}{dt}=\bigg( \cfrac{\partial V}{\partial x} \bigg)_{y,z,t}V_x+\bigg( \cfrac{\partial V}{\partial y} \bigg)_{x,z,t}V_y+\bigg( \cfrac{\partial V}{\partial z} \bigg)_{y,x,t}V_z+\bigg( \cfrac{\partial V}{\partial t} \bigg)_{x,y,z} \\

Evaluating all four terms in above equation.....

VxVx=12x5i^20x4yj^........Eq[1]VyVy=25x4yj^........Eq[2]VzVz=0........Eq[3]Vt=4k^........Eq[4]V_x\cfrac{\partial V}{\partial x}=12x^5\hat{i}-20x^4y\hat{j}........Eq[1]\\ V_y\cfrac{\partial V}{\partial y}=25x^4y\hat{j}........Eq[2]\\ V_z\cfrac{\partial V}{\partial z}=0........Eq[3]\\ \cfrac{\partial V}{\partial t}=4\hat{k}........Eq[4]

Using all above four equations in expression of acceleration, we have....

a=12x5i^+5x4yj^+4k^\vec{a}=12x^5\hat{i}+5x^4y\hat{j}+4\hat{k}

Now at point (x,y,z,t)=(1,2,3,1)...

V=2i^10j^+4k^a=12i^+10j^+4k^......Ans\vec V=2\hat{i}-10\hat{j}+4\hat{k} \\ \vec a=12\hat{i}+10\hat{j}+4\hat{k}......Ans

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS