Solution: 1) Given that "g(x)= e^{-5x}+(\\frac{1}{x}-tan x^3) (\\sqrt{x^2+1})"
"\\therefore g'(x)=\\frac{d}{dx}[ e^{-5x}+(\\frac{1}{x}-tan x^3) (\\sqrt{x^2+1})]"
"g'(x)=\\frac{d}{dx}[ e^{-5x}]+\\frac{d}{dx}[(\\frac{1}{x}-tan x^3) (\\sqrt{x^2+1})]"
"g'(x)=e^{-5x}\\frac{d}{dx}[ -5x]+(\\sqrt{x^2+1})\\frac{d}{dx}[(\\frac{1}{x}-tan x)^3]+[(\\frac{1}{x}-tan x)^3]\\frac{d}{dx}[\\sqrt{x^2+1}]"
"g'(x)=e^{-5x}[-5\\frac{d}{dx}(x)+(\\sqrt{x^2+1}).3(\\frac{1}{x}- tan(x))^2\\frac{d}{dx}[(\\frac{1}{x}-tan(x))]+[(\\frac{1}{x}-tan (x))^3].\\frac{1}{2}(x^2+1)^{\\frac{1}{2}-1}.\\frac{d}{dx}[x^2+1]"
"g'(x)=-5e^{-5x}+(\\sqrt{x^2+1}).3(\\frac{1}{x}- tan(x))^2(\\frac{d}{dx}[\\frac{1}{x}]-\\frac{d}{dx}[tan(x)])+[(\\frac{1}{x}-tan(x))^3].\\frac{1}{2}(x^2+1)^{-\\frac{1}{2}}.(\\frac{d}{dx}[x^2]+\\frac{d}{dx}[1])"
"g'(x)=-5e^{-5x}+(\\sqrt{x^2+1}).3(\\frac{1}{x}- tan(x))^2(-\\frac{1}{x^2}-sec^2 x)+[(\\frac{1}{x}-tan (x))^3].\\frac{1}{2\\sqrt{x^2+1}}(2x+0)"
"g'(x)=-5e^{-5x}+(\\sqrt{x^2+1}).3(\\frac{1}{x}- tan(x))^2(-\\frac{1}{x^2}-sec^2 x)+.\\frac{(2x)[(\\frac{1}{x}-tan (x))^3]}{2\\sqrt{x^2+1}}"
"g'(x)=-5e^{-5x}+(\\sqrt{x^2+1}).3(\\frac{1}{x}- tan (x))^2(-\\frac{1}{x^2}-sec^2 x)+.\\frac{(x)(\\frac{1}{x}-tan (x))^3}{\\sqrt{x^2+1}}"
Solution: 2) Given that "f(x)=\\pi-\\sqrt{7x-9}"
By definition of derivative, "f'(x)=\\frac{f(x+h)-f(x)}{h}"
"\\therefore f'(x)= lim_{h\\to0}\\frac{\\pi-\\sqrt{7(x+h)-9} - (\\pi-\\sqrt{7x-9})}{h}"
"f'(x)= lim_{h\\to0}\\frac{\\pi-\\sqrt{7(x+h)-9} - \\pi+\\sqrt{7x-9})}{h}" [brackets opening]
"f'(x)= lim_{h\\to0}\\frac{-\\sqrt{7(x+h)-9} +\\sqrt{7x-9})}{h}"
"f'(x)= lim_{h\\to0}\\frac{\\sqrt{7x-9}-\\sqrt{7(x+h)-9}}{h}"
"f'(x)= lim_{h\\to0}\\frac{\\sqrt{7x-9}-\\sqrt{7(x+h)-9}}{h}.\\frac{\\sqrt{7x-9}+\\sqrt{7(x+h)-9}}{\\sqrt{7x-9}+\\sqrt{7(x+h)-9}}" [Rationalization]
"f'(x)= lim_{h\\to0}\\frac{(\\sqrt{7x-9}-\\sqrt{7(x+h)-9})(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})}{h(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})}"
"f'(x)= lim_{h\\to0}\\frac{(\\sqrt{7x-9})^2+(\\sqrt{7(x+h)-9})^2}{h(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})}" [using formula (a-b)(a+b)=a2-b2]
"f'(x)= lim_{h\\to0}\\frac{7x-9-7x-7h+9}{h(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})}"
"f'(x)= lim_{h\\to0}\\frac{-7h}{h(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})}"
"f'(x)= lim_{h\\to0}\\frac{-7}{(\\sqrt{7x-9}+\\sqrt{7(x+h)-9})}"
"f'(x)=\\frac{-7}{(\\sqrt{7x-9}+\\sqrt{7x-9})}"
"f'(x)=\\frac{-7}{2\\sqrt{7x-9}}"
Comments
Leave a comment