Solution: 1) Given that g(x)=e−5x+(x1−tanx3)(x2+1) 
                                         
                                         ∴g′(x)=dxd[e−5x+(x1−tanx3)(x2+1)] 
                         g′(x)=dxd[e−5x]+dxd[(x1−tanx3)(x2+1)] 
                                    
                        g′(x)=e−5xdxd[−5x]+(x2+1)dxd[(x1−tanx)3]+[(x1−tanx)3]dxd[x2+1] 
g′(x)=e−5x[−5dxd(x)+(x2+1).3(x1−tan(x))2dxd[(x1−tan(x))]+[(x1−tan(x))3].21(x2+1)21−1.dxd[x2+1] 
g′(x)=−5e−5x+(x2+1).3(x1−tan(x))2(dxd[x1]−dxd[tan(x)])+[(x1−tan(x))3].21(x2+1)−21.(dxd[x2]+dxd[1]) 
g′(x)=−5e−5x+(x2+1).3(x1−tan(x))2(−x21−sec2x)+[(x1−tan(x))3].2x2+11(2x+0) 
g′(x)=−5e−5x+(x2+1).3(x1−tan(x))2(−x21−sec2x)+.2x2+1(2x)[(x1−tan(x))3] 
g′(x)=−5e−5x+(x2+1).3(x1−tan(x))2(−x21−sec2x)+.x2+1(x)(x1−tan(x))3 
Solution: 2) Given that f(x)=π−7x−9 
                    
                     By definition of derivative,   f′(x)=hf(x+h)−f(x) 
                     
                     ∴f′(x)=limh→0hπ−7(x+h)−9−(π−7x−9) 
                       f′(x)=limh→0hπ−7(x+h)−9−π+7x−9)   [brackets opening]
                       f′(x)=limh→0h−7(x+h)−9+7x−9) 
                      f′(x)=limh→0h7x−9−7(x+h)−9 
                      f′(x)=limh→0h7x−9−7(x+h)−9.7x−9+7(x+h)−97x−9+7(x+h)−9 [Rationalization]
                      f′(x)=limh→0h(7x−9+7(x+h)−9)(7x−9−7(x+h)−9)(7x−9+7(x+h)−9) 
                       f′(x)=limh→0h(7x−9+7(x+h)−9)(7x−9)2+(7(x+h)−9)2     [using formula (a-b)(a+b)=a2-b2]
                      f′(x)=limh→0h(7x−9+7(x+h)−9)7x−9−7x−7h+9 
                      f′(x)=limh→0h(7x−9+7(x+h)−9)−7h 
                   
                      f′(x)=limh→0(7x−9+7(x+h)−9)−7 
                       f′(x)=(7x−9+7x−9)−7 
                      
                       f′(x)=27x−9−7 
                        
 
                         
                             
Comments