Question #150223
1) Differentiate the following function
g(x) = e^-5x + ((1/x)- tanx)^3 ( squat root of x^2 +1)

2)
Let f(x)= pi- squat root of 7x-9. Use the definition of the derivative to find f’(x)
1
Expert's answer
2020-12-13T16:42:35-0500

Solution: 1) Given that g(x)=e5x+(1xtanx3)(x2+1)g(x)= e^{-5x}+(\frac{1}{x}-tan x^3) (\sqrt{x^2+1})

g(x)=ddx[e5x+(1xtanx3)(x2+1)]\therefore g'(x)=\frac{d}{dx}[ e^{-5x}+(\frac{1}{x}-tan x^3) (\sqrt{x^2+1})]


g(x)=ddx[e5x]+ddx[(1xtanx3)(x2+1)]g'(x)=\frac{d}{dx}[ e^{-5x}]+\frac{d}{dx}[(\frac{1}{x}-tan x^3) (\sqrt{x^2+1})]

g(x)=e5xddx[5x]+(x2+1)ddx[(1xtanx)3]+[(1xtanx)3]ddx[x2+1]g'(x)=e^{-5x}\frac{d}{dx}[ -5x]+(\sqrt{x^2+1})\frac{d}{dx}[(\frac{1}{x}-tan x)^3]+[(\frac{1}{x}-tan x)^3]\frac{d}{dx}[\sqrt{x^2+1}]


g(x)=e5x[5ddx(x)+(x2+1).3(1xtan(x))2ddx[(1xtan(x))]+[(1xtan(x))3].12(x2+1)121.ddx[x2+1]g'(x)=e^{-5x}[-5\frac{d}{dx}(x)+(\sqrt{x^2+1}).3(\frac{1}{x}- tan(x))^2\frac{d}{dx}[(\frac{1}{x}-tan(x))]+[(\frac{1}{x}-tan (x))^3].\frac{1}{2}(x^2+1)^{\frac{1}{2}-1}.\frac{d}{dx}[x^2+1]


g(x)=5e5x+(x2+1).3(1xtan(x))2(ddx[1x]ddx[tan(x)])+[(1xtan(x))3].12(x2+1)12.(ddx[x2]+ddx[1])g'(x)=-5e^{-5x}+(\sqrt{x^2+1}).3(\frac{1}{x}- tan(x))^2(\frac{d}{dx}[\frac{1}{x}]-\frac{d}{dx}[tan(x)])+[(\frac{1}{x}-tan(x))^3].\frac{1}{2}(x^2+1)^{-\frac{1}{2}}.(\frac{d}{dx}[x^2]+\frac{d}{dx}[1])


g(x)=5e5x+(x2+1).3(1xtan(x))2(1x2sec2x)+[(1xtan(x))3].12x2+1(2x+0)g'(x)=-5e^{-5x}+(\sqrt{x^2+1}).3(\frac{1}{x}- tan(x))^2(-\frac{1}{x^2}-sec^2 x)+[(\frac{1}{x}-tan (x))^3].\frac{1}{2\sqrt{x^2+1}}(2x+0)


g(x)=5e5x+(x2+1).3(1xtan(x))2(1x2sec2x)+.(2x)[(1xtan(x))3]2x2+1g'(x)=-5e^{-5x}+(\sqrt{x^2+1}).3(\frac{1}{x}- tan(x))^2(-\frac{1}{x^2}-sec^2 x)+.\frac{(2x)[(\frac{1}{x}-tan (x))^3]}{2\sqrt{x^2+1}}


g(x)=5e5x+(x2+1).3(1xtan(x))2(1x2sec2x)+.(x)(1xtan(x))3x2+1g'(x)=-5e^{-5x}+(\sqrt{x^2+1}).3(\frac{1}{x}- tan (x))^2(-\frac{1}{x^2}-sec^2 x)+.\frac{(x)(\frac{1}{x}-tan (x))^3}{\sqrt{x^2+1}}


Solution: 2) Given that f(x)=π7x9f(x)=\pi-\sqrt{7x-9}

By definition of derivative, f(x)=f(x+h)f(x)hf'(x)=\frac{f(x+h)-f(x)}{h}

f(x)=limh0π7(x+h)9(π7x9)h\therefore f'(x)= lim_{h\to0}\frac{\pi-\sqrt{7(x+h)-9} - (\pi-\sqrt{7x-9})}{h}


f(x)=limh0π7(x+h)9π+7x9)hf'(x)= lim_{h\to0}\frac{\pi-\sqrt{7(x+h)-9} - \pi+\sqrt{7x-9})}{h} [brackets opening]


f(x)=limh07(x+h)9+7x9)hf'(x)= lim_{h\to0}\frac{-\sqrt{7(x+h)-9} +\sqrt{7x-9})}{h}


f(x)=limh07x97(x+h)9hf'(x)= lim_{h\to0}\frac{\sqrt{7x-9}-\sqrt{7(x+h)-9}}{h}


f(x)=limh07x97(x+h)9h.7x9+7(x+h)97x9+7(x+h)9f'(x)= lim_{h\to0}\frac{\sqrt{7x-9}-\sqrt{7(x+h)-9}}{h}.\frac{\sqrt{7x-9}+\sqrt{7(x+h)-9}}{\sqrt{7x-9}+\sqrt{7(x+h)-9}} [Rationalization]


f(x)=limh0(7x97(x+h)9)(7x9+7(x+h)9)h(7x9+7(x+h)9)f'(x)= lim_{h\to0}\frac{(\sqrt{7x-9}-\sqrt{7(x+h)-9})(\sqrt{7x-9}+\sqrt{7(x+h)-9})}{h(\sqrt{7x-9}+\sqrt{7(x+h)-9})}


f(x)=limh0(7x9)2+(7(x+h)9)2h(7x9+7(x+h)9)f'(x)= lim_{h\to0}\frac{(\sqrt{7x-9})^2+(\sqrt{7(x+h)-9})^2}{h(\sqrt{7x-9}+\sqrt{7(x+h)-9})} [using formula (a-b)(a+b)=a2-b2]


f(x)=limh07x97x7h+9h(7x9+7(x+h)9)f'(x)= lim_{h\to0}\frac{7x-9-7x-7h+9}{h(\sqrt{7x-9}+\sqrt{7(x+h)-9})}


f(x)=limh07hh(7x9+7(x+h)9)f'(x)= lim_{h\to0}\frac{-7h}{h(\sqrt{7x-9}+\sqrt{7(x+h)-9})}

f(x)=limh07(7x9+7(x+h)9)f'(x)= lim_{h\to0}\frac{-7}{(\sqrt{7x-9}+\sqrt{7(x+h)-9})}


f(x)=7(7x9+7x9)f'(x)=\frac{-7}{(\sqrt{7x-9}+\sqrt{7x-9})}

f(x)=727x9f'(x)=\frac{-7}{2\sqrt{7x-9}}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS