Answer to Question #150309 in Calculus for stefanus weyulu

Question #150309
Let f(x) = x^2
2 + 6x. Use the definition (ε − δ method) to show that
lim
x→−3
f(x) = −9 .
1
Expert's answer
2020-12-13T16:46:33-0500

We need to prove that for every positive ϵ\epsilon > 0, there exist a δ\delta such that |f(x) + 9| < ϵ\epsilon for all x satisfying 0<|x+3|<δ(x2+6x)+9<ϵ(x+3)(x+3)<ϵfor all x satisfying0<x+3<δsince |x+3|<δδ2<ϵδ<ϵwe chooseδ=ϵthen the statement(x+3)(x+3)<ϵfor all x satisfying0<x+3<δholdsHenceLimx2(x2+6x)=9\delta\\ |(x^2+6x)+9|<\epsilon\\ |(x+3)(x+3)|<\epsilon\\ \text{for all x satisfying} 0<|x+3|<\delta\\ \text{since |x+3|<} \delta\\ \delta^2<\epsilon\\ \delta<\sqrt\epsilon\\ \text{we choose}\\ \delta=\sqrt\epsilon\\ \text{then the statement}\\ |(x+3)(x+3)|<\epsilon\\ \text{for all x satisfying} 0<|x+3|<\delta\\ \text{holds}\\ Hence\\ Lim_{x\to 2}(x^2+6x)=-9

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment