Let f(x) = x^2
2 + 6x. Use the definition (ε − δ method) to show that
lim
x→−3
f(x) = −9 .
1
Expert's answer
2020-12-13T16:46:33-0500
We need to prove that for every positive ϵ > 0, there exist a δ such that |f(x) + 9| < ϵ for all x satisfying 0<|x+3|<δ∣(x2+6x)+9∣<ϵ∣(x+3)(x+3)∣<ϵfor all x satisfying0<∣x+3∣<δsince |x+3|<δδ2<ϵδ<ϵwe chooseδ=ϵthen the statement∣(x+3)(x+3)∣<ϵfor all x satisfying0<∣x+3∣<δholdsHenceLimx→2(x2+6x)=−9
Comments
Leave a comment