Total Surface Area of the box(A)=2(b(b+1)+(b+1)(b+4)+(b(b+4))=2((b2+b)+(b2+5b+4)+(b2+4b))=2(3b2+10b+4) ⟹ 6b2+20b+8Hence, dAdb=12b+20\text{Total Surface Area of the box(A)}=2(b(b+1)+(b+1)(b+4)+(b(b+4)) \\=2((b^2+b)+(b^2+5b+4)+(b^2+4b))\\=2(3b^2+10b+4)\implies 6b^2+20b+8\\\text{Hence, } \frac{dA}{db}=12b+20Total Surface Area of the box(A)=2(b(b+1)+(b+1)(b+4)+(b(b+4))=2((b2+b)+(b2+5b+4)+(b2+4b))=2(3b2+10b+4)⟹6b2+20b+8Hence, dbdA=12b+20
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments