The region of integration:
Double integral with order of integration reversed:
∫1exp[3]∫lnx3(x+y)dydx=∫1exp[3]∫lnx3(x+y)dydx =
∫1exp[3](0.5∗(9−ln2(x))−x(lnx−3))dx=
∫1exp[3](−0.5(lnx−3)(2x+lnx+3))dx =
−0.5∫1exp[3](−6x+ln2x+2x∗lnx−9)dx =
−0.5∫1exp[3](ln2x)dx−∫1exp[3](x∗lnx)dx+3∫1exp[3](x)dx+9/2∗∫1exp[3](1)dx
(−0.5∗x∗ln2x)∣1e3+∫1exp[3](lnx)dx−∫1exp[3](x∗lnx)dx+3∫1exp[3](x)dx+9/2∗∫1exp[3](1)dx
−9/2∗e3+(x∗lnx)∣1e3+7/2∫1exp[3](1)dx−∫1exp[3](x∗lnx)dx+3∫1exp[3](x)dx
−3/2∗e3+7/2∫1exp[3](1)dx−∫1exp[3](x∗lnx)dx+3∫1exp[3](x)dx
−3/2∗e3+7x/2∣1e3−∫1exp[3](x∗lnx)dx+3∫1exp[3](x)dx
−3/2∗e3+7/2(e3−1)−∫1exp[3](x∗lnx)dx+3∫1exp[3](x)dx
−3/2∗e3+7/2(e3−1)+(−0.5x2∗lnx)∣1e3+7/2∫1exp[3](x)dx
−3/2∗e3−3∗e6/2+7/2(e3−1)+7/2∫1exp[3](x)dx
−3/2∗e3−3∗e6/2+7/2(e3−1)+7x2/4∣1e3
−3/2∗e3−3∗e6/2+7/2(e3−1)+7/4∗(e6−1)
Comments