Question #150487
sketch the region of integration and write an equivalent double integral with order of integration reversed and then calculate it.

integral 0 to 3 integral 1 to e^y (x+y) dx dy
1
Expert's answer
2020-12-14T19:55:55-0500

The region of integration:



Double integral with order of integration reversed:

1exp[3]lnx3(x+y)dydx=1exp[3]lnx3(x+y)dydx\int_1^{exp[3]} \int_{lnx}^{3} (x+y)dy dx=\int_1^{exp[3]} \int_{lnx}^{3} (x+y)dy dx =

1exp[3](0.5(9ln2(x))x(lnx3))dx\int_1^{exp[3]} (0.5*(9-ln^2(x))-x(lnx-3)) dx=

1exp[3](0.5(lnx3)(2x+lnx+3))dx\int_1^{exp[3]} (-0.5(lnx-3)(2x+lnx+3)) dx =

0.51exp[3](6x+ln2x+2xlnx9)dx-0.5\int_1^{exp[3]} (-6x+ln^2x+2x*lnx-9) dx =

0.51exp[3](ln2x)dx1exp[3](xlnx)dx+31exp[3](x)dx+9/21exp[3](1)dx-0.5\int_1^{exp[3]} (ln^2x) dx-\int_1^{exp[3]} (x*lnx) dx+3\int_1^{exp[3]} (x) dx+9/2*\int_1^{exp[3]} (1) dx

(0.5xln2x)1e3+1exp[3](lnx)dx1exp[3](xlnx)dx+31exp[3](x)dx+9/21exp[3](1)dx(-0.5*x*ln^2x)\vert_1^{e^3}+\int_1^{exp[3]} (lnx) dx-\int_1^{exp[3]} (x*lnx) dx+3\int_1^{exp[3]} (x) dx+9/2*\int_1^{exp[3]} (1) dx

9/2e3+(xlnx)1e3+7/21exp[3](1)dx1exp[3](xlnx)dx+31exp[3](x)dx-9/2*e^3+(x*lnx)\vert_1^{e^3}+7/2\int_1^{exp[3]} (1) dx-\int_1^{exp[3]} (x*lnx) dx+3\int_1^{exp[3]} (x) dx

3/2e3+7/21exp[3](1)dx1exp[3](xlnx)dx+31exp[3](x)dx-3/2*e^3+7/2\int_1^{exp[3]} (1) dx-\int_1^{exp[3]} (x*lnx) dx+3\int_1^{exp[3]} (x) dx

3/2e3+7x/21e31exp[3](xlnx)dx+31exp[3](x)dx-3/2*e^3+7x/2\vert_1^{e^3}-\int_1^{exp[3]} (x*lnx) dx+3\int_1^{exp[3]} (x) dx

3/2e3+7/2(e31)1exp[3](xlnx)dx+31exp[3](x)dx-3/2*e^3+7/2(e^3-1)-\int_1^{exp[3]} (x*lnx) dx+3\int_1^{exp[3]} (x) dx

3/2e3+7/2(e31)+(0.5x2lnx)1e3+7/21exp[3](x)dx-3/2*e^3+7/2(e^3-1)+(-0.5x^2*lnx)\vert_1^{e^3}+7/2\int_1^{exp[3]} (x) dx

3/2e33e6/2+7/2(e31)+7/21exp[3](x)dx-3/2*e^3-3*e^6/2+7/2(e^3-1)+7/2\int_1^{exp[3]} (x) dx

3/2e33e6/2+7/2(e31)+7x2/41e3-3/2*e^3-3*e^6/2+7/2(e^3-1)+7x^2/4\vert_1^{e^3}

3/2e33e6/2+7/2(e31)+7/4(e61)-3/2*e^3-3*e^6/2+7/2(e^3-1)+7/4*(e^6-1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS