The region of integration:
Double integral with order of integration reversed:
"\\int_1^{exp[3]} \\int_{lnx}^{3} (x+y)dy dx=\\int_1^{exp[3]} \\int_{lnx}^{3} (x+y)dy dx" =
"\\int_1^{exp[3]} (0.5*(9-ln^2(x))-x(lnx-3)) dx"=
"\\int_1^{exp[3]} (-0.5(lnx-3)(2x+lnx+3)) dx" =
"-0.5\\int_1^{exp[3]} (-6x+ln^2x+2x*lnx-9) dx" =
"-0.5\\int_1^{exp[3]} (ln^2x) dx-\\int_1^{exp[3]} (x*lnx) dx+3\\int_1^{exp[3]} (x) dx+9\/2*\\int_1^{exp[3]} (1) dx"
"(-0.5*x*ln^2x)\\vert_1^{e^3}+\\int_1^{exp[3]} (lnx) dx-\\int_1^{exp[3]} (x*lnx) dx+3\\int_1^{exp[3]} (x) dx+9\/2*\\int_1^{exp[3]} (1) dx"
"-9\/2*e^3+(x*lnx)\\vert_1^{e^3}+7\/2\\int_1^{exp[3]} (1) dx-\\int_1^{exp[3]} (x*lnx) dx+3\\int_1^{exp[3]} (x) dx"
"-3\/2*e^3+7\/2\\int_1^{exp[3]} (1) dx-\\int_1^{exp[3]} (x*lnx) dx+3\\int_1^{exp[3]} (x) dx"
"-3\/2*e^3+7x\/2\\vert_1^{e^3}-\\int_1^{exp[3]} (x*lnx) dx+3\\int_1^{exp[3]} (x) dx"
"-3\/2*e^3+7\/2(e^3-1)-\\int_1^{exp[3]} (x*lnx) dx+3\\int_1^{exp[3]} (x) dx"
"-3\/2*e^3+7\/2(e^3-1)+(-0.5x^2*lnx)\\vert_1^{e^3}+7\/2\\int_1^{exp[3]} (x) dx"
"-3\/2*e^3-3*e^6\/2+7\/2(e^3-1)+7\/2\\int_1^{exp[3]} (x) dx"
"-3\/2*e^3-3*e^6\/2+7\/2(e^3-1)+7x^2\/4\\vert_1^{e^3}"
"-3\/2*e^3-3*e^6\/2+7\/2(e^3-1)+7\/4*(e^6-1)"
Comments
Leave a comment