"f(x) = \\pi - \\sqrt{7x - 9} \\\\\n\nf(x + \\delta x) = \\pi - \\sqrt{7(x + \\delta x) - 9} \\\\\n\nf(x + \\delta x) - f(x) = \\pi - \\sqrt{7(x + \\delta x) - 9} - (\\pi - \\sqrt{7x - 9})\\\\\n\n\\begin{aligned}\nf(x + \\delta x) - f(x) &= \\sqrt{7x - 9} - \\sqrt{7x - 9 + 7\\delta x}\n\\\\&= -(7x - 9)^{\\frac{1}{2}} - \\frac{1}{2}(7x - 9)^{\\frac{1}{2} - 1}(7\\delta x) - \\frac{\\frac{1}{2}\\left(\\frac{1}{2} - 1\\right)}{2!} (7x - 9)^{\\frac{1}{2} - 2} (7\\delta x)^2 - \\\\&\\frac{\\frac{1}{2}\\left(\\frac{1}{2} - 1\\right)\\left(\\frac{1}{2} - 2\\right)}{3!} (7x - 9)^{\\frac{1}{2} - 3} (7\\delta x)^3 - \\cdots + (7x - 9)^{\\frac{1}{2}}\n\\\\&= -(7x - 9)^{\\frac{1}{2}} - \\frac{(7x - 9)^{-\\frac{1}{2}}}{2}(7\\delta x) +\\\\& \\frac{(7x - 9)^{-\\frac{3}{2}}}{8}(7\\delta x)^2 - \\frac{(7x - 9)^{-\\frac{5}{2}} (7\\delta x)^3}{16} + \\\\&\\cdots - (7x - 9)^{\\frac{1}{2}}\n\\\\&= -\\frac{(7x - 9)^{-\\frac{1}{2}}}{2}(7\\delta x) + \\frac{(7x - 9)^{-\\frac{3}{2}} (7\\delta x)^2}{8} -\\\\& \\frac{(7x - 9)^{-\\frac{5}{2}} (7\\delta x)^3}{16} + \\cdots\\\\\n\\frac{f(x + \\delta x) - f(x)}{\\delta x} &=-\\frac{7(7x - 9)^{-\\frac{1}{2}}}{2} + \\frac{(7x - 9)^{-\\frac{3}{2}} (7\\delta x)}{8} -\\\\& \\frac{(7x - 9)^{-\\frac{5}{2}} (7\\delta x)^2}{16} + \\cdots\\\\\n\\lim_{\\delta x \\to 0}\\frac{f(x + \\delta x) - f(x)}{\\delta x} &= -\\frac{7(7x - 9)^{-\\frac{1}{2}}}{2} + \\frac{(7x - 9)^{-\\frac{3}{2}} (0)}{8} -\\\\& \\frac{(7x - 9)^{-\\frac{5}{2}} (0)^2}{16} + 0 + \\cdots + 0 + \\cdots\\\\\n\\therefore f'(x) &= \\frac{-7}{2\\sqrt{7x - 9}}\n\\end{aligned}"
Comments
Leave a comment