Question #150321
Let f(x) = π −

7x − 9. Use the definition of the derivative to find f
0
(x).
1
Expert's answer
2020-12-23T18:02:31-0500

f(x)=π7x9f(x+δx)=π7(x+δx)9f(x+δx)f(x)=π7(x+δx)9(π7x9)f(x+δx)f(x)=7x97x9+7δx=(7x9)1212(7x9)121(7δx)12(121)2!(7x9)122(7δx)212(121)(122)3!(7x9)123(7δx)3+(7x9)12=(7x9)12(7x9)122(7δx)+(7x9)328(7δx)2(7x9)52(7δx)316+(7x9)12=(7x9)122(7δx)+(7x9)32(7δx)28(7x9)52(7δx)316+f(x+δx)f(x)δx=7(7x9)122+(7x9)32(7δx)8(7x9)52(7δx)216+limδx0f(x+δx)f(x)δx=7(7x9)122+(7x9)32(0)8(7x9)52(0)216+0++0+f(x)=727x9f(x) = \pi - \sqrt{7x - 9} \\ f(x + \delta x) = \pi - \sqrt{7(x + \delta x) - 9} \\ f(x + \delta x) - f(x) = \pi - \sqrt{7(x + \delta x) - 9} - (\pi - \sqrt{7x - 9})\\ \begin{aligned} f(x + \delta x) - f(x) &= \sqrt{7x - 9} - \sqrt{7x - 9 + 7\delta x} \\&= -(7x - 9)^{\frac{1}{2}} - \frac{1}{2}(7x - 9)^{\frac{1}{2} - 1}(7\delta x) - \frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)}{2!} (7x - 9)^{\frac{1}{2} - 2} (7\delta x)^2 - \\&\frac{\frac{1}{2}\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}{3!} (7x - 9)^{\frac{1}{2} - 3} (7\delta x)^3 - \cdots + (7x - 9)^{\frac{1}{2}} \\&= -(7x - 9)^{\frac{1}{2}} - \frac{(7x - 9)^{-\frac{1}{2}}}{2}(7\delta x) +\\& \frac{(7x - 9)^{-\frac{3}{2}}}{8}(7\delta x)^2 - \frac{(7x - 9)^{-\frac{5}{2}} (7\delta x)^3}{16} + \\&\cdots - (7x - 9)^{\frac{1}{2}} \\&= -\frac{(7x - 9)^{-\frac{1}{2}}}{2}(7\delta x) + \frac{(7x - 9)^{-\frac{3}{2}} (7\delta x)^2}{8} -\\& \frac{(7x - 9)^{-\frac{5}{2}} (7\delta x)^3}{16} + \cdots\\ \frac{f(x + \delta x) - f(x)}{\delta x} &=-\frac{7(7x - 9)^{-\frac{1}{2}}}{2} + \frac{(7x - 9)^{-\frac{3}{2}} (7\delta x)}{8} -\\& \frac{(7x - 9)^{-\frac{5}{2}} (7\delta x)^2}{16} + \cdots\\ \lim_{\delta x \to 0}\frac{f(x + \delta x) - f(x)}{\delta x} &= -\frac{7(7x - 9)^{-\frac{1}{2}}}{2} + \frac{(7x - 9)^{-\frac{3}{2}} (0)}{8} -\\& \frac{(7x - 9)^{-\frac{5}{2}} (0)^2}{16} + 0 + \cdots + 0 + \cdots\\ \therefore f'(x) &= \frac{-7}{2\sqrt{7x - 9}} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS