f(x)=π−7x−9f(x+δx)=π−7(x+δx)−9f(x+δx)−f(x)=π−7(x+δx)−9−(π−7x−9)f(x+δx)−f(x)δxf(x+δx)−f(x)δx→0limδxf(x+δx)−f(x)∴f′(x)=7x−9−7x−9+7δx=−(7x−9)21−21(7x−9)21−1(7δx)−2!21(21−1)(7x−9)21−2(7δx)2−3!21(21−1)(21−2)(7x−9)21−3(7δx)3−⋯+(7x−9)21=−(7x−9)21−2(7x−9)−21(7δx)+8(7x−9)−23(7δx)2−16(7x−9)−25(7δx)3+⋯−(7x−9)21=−2(7x−9)−21(7δx)+8(7x−9)−23(7δx)2−16(7x−9)−25(7δx)3+⋯=−27(7x−9)−21+8(7x−9)−23(7δx)−16(7x−9)−25(7δx)2+⋯=−27(7x−9)−21+8(7x−9)−23(0)−16(7x−9)−25(0)2+0+⋯+0+⋯=27x−9−7
Comments