The function "f: \\rm I\\!R^2 \\to \\rm I\\!R" defined by "f(x)=c \\cdot x" for a fixed "c".
I'll show that "f" is continuous at a point "x_0 \\in \\rm I\\!R^n" . Given any "e >0", we need to show that there exists "\\delta >0" such that "\\| x-x_0\\|<\\delta \\implies |f(x)-f(x_0)|<e"
Now consider "|f(x)-f(x_0)|=|c \\cdot x-c \\cdot x_0|=|c \\cdot (x-x_0)| \\leq \\|c\\|\\ \\|x-x_0\\|"
Choose "\\delta= \\frac{\\|c\\|}{e} \\implies |f(x)-f(x_0)|\\leq \\|c\\| \\|x-x_0\\|<\\|c\\| \\delta=e"
Comments
Leave a comment