Question #145455
If c∈Vn, show that the function f given by f(x)=c.x is continuous on R^n.
1
Expert's answer
2020-11-27T02:57:00-0500
SolutionSolution

The function f:I ⁣R2I ⁣Rf: \rm I\!R^2 \to \rm I\!R defined by f(x)=cxf(x)=c \cdot x for a fixed cc.


I'll show that ff is continuous at a point x0I ⁣Rnx_0 \in \rm I\!R^n . Given any e>0e >0, we need to show that there exists δ>0\delta >0 such that xx0<δ    f(x)f(x0)<e\| x-x_0\|<\delta \implies |f(x)-f(x_0)|<e


Now consider f(x)f(x0)=cxcx0=c(xx0)c xx0|f(x)-f(x_0)|=|c \cdot x-c \cdot x_0|=|c \cdot (x-x_0)| \leq \|c\|\ \|x-x_0\|


Choose δ=ce    f(x)f(x0)cxx0<cδ=e\delta= \frac{\|c\|}{e} \implies |f(x)-f(x_0)|\leq \|c\| \|x-x_0\|<\|c\| \delta=e




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS