Let ϵ>0\epsilon>0ϵ>0 be given. We want to find a δ=δ(ϵ)>0\delta=\delta(\epsilon) >0δ=δ(ϵ)>0 such that for any x0∈Rx_0 \in \mathbb{R}x0∈R if ∣x−x0∣<δ|x-x_0|<\delta∣x−x0∣<δ then, ∣f(x)−f(x0)∣<ϵ|f(x)-f(x_0)|<\epsilon∣f(x)−f(x0)∣<ϵ
Now,
∣f(x)−f(x0)∣=∣∣x∣−∣x0∣∣≤∣x−x0∣<δ=ϵ|f(x)-f(x_0)|=||x|-|x_0|| \leq|x-x_0|<\delta=\epsilon∣f(x)−f(x0)∣=∣∣x∣−∣x0∣∣≤∣x−x0∣<δ=ϵ if δ=ϵ.\delta=\epsilon.δ=ϵ.
⟹ ∣f(x)−f(x0)∣<ϵ\implies |f(x)-f(x_0)|<\epsilon⟹∣f(x)−f(x0)∣<ϵ
Hence, f(x)=∣x∣f(x)=|x|f(x)=∣x∣ is continuous on R\mathbb{R}R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment