Let "\\epsilon>0" be given. We want to find a "\\delta=\\delta(\\epsilon) >0" such that for any "x_0 \\in \\mathbb{R}" if "|x-x_0|<\\delta" then, "|f(x)-f(x_0)|<\\epsilon"
Now,
"|f(x)-f(x_0)|=||x|-|x_0|| \\leq|x-x_0|<\\delta=\\epsilon" if "\\delta=\\epsilon."
"\\implies |f(x)-f(x_0)|<\\epsilon"
Hence, "f(x)=|x|" is continuous on "\\mathbb{R}"
Comments
Leave a comment