If z=f(x,y) - surface, then volume under this surface is calculated as "\\int_R f(x,y)dxdy" where R is a region of xOy plane.
2.a) "\\int_1^2dx\\int_3^5(x+2y)dy=\\int_1^2(xy+y^2)|_3^5 dx="
"=\\int_1^2(5x+25-3x-9) dx=\\int_1^2(2x+16) dx="
"=(x^2+16x)|_1^2=4+32-1-16=19" .
Answer: 19
2.b) "\\int_0^2dx\\int_1^3(xy^2+y^3)dy=\\int_0^2(\\frac{xy^3}{3}+\\frac{y^4}{4})|_1^3dx="
"=\\int_0^2(9x+\\frac{81}{4}-\\frac{x}{3}-\\frac{1}{4})dx=\\int_0^2(\\frac{26x}{3}+20)dx="
"=(\\frac{13x^2}{3}+20x)|_0^2=\\frac{52}{3}+40=\\frac{172}{3}=57\\frac{1}{3}" .
Answer: "57\\frac{1}{3}"
Comments
Leave a comment