Answer to Question #144509 in Calculus for Hussaina

Question #144509
. If \\(θ(x,y,z)=3x^2 y-y^3 z^2\\),find \\( ˆ‡Î¸\\) (grad θ) at the point (1, -2, -1).
1
Expert's answer
2020-11-17T16:19:45-0500

f(x,y,z)=3x2yy3z2,M(1,2,1)f(x, y, z)=3x^2y -y^3z^2, M(1, -2, -1)


fx=6xy,\dfrac{\partial f}{\partial x}=6xy,


fy=3x23y2z2,\dfrac{\partial f}{\partial y}=3x^2-3y^2z^2,

fz=2y3z\dfrac{\partial f}{\partial z}=-2y^3z

f(M)x=6(1)(2)=12,\dfrac{\partial f(M)}{\partial x}=6(1)(-2)=-12,

f(M)y=3(1)23(2)2(1)2=9,\dfrac{\partial f(M)}{\partial y}=3(1)^2-3(-2)^2(-1)^2=-9,

f(M)z=2(2)3(1)=16\dfrac{\partial f(M)}{\partial z}=-2(-2)^3(-1)=-16


gradf(M)=12i9j16k\text{grad}f(M)=-12\vec{i}-9\vec{j}-16\vec{k}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment