h(t)= -16t^2+ ut +ho,
Where u is the initial speed
ho=2, u=120.
Substitute these values into the function
h(t)= -16t^2+ 120t + 2.
Take the first derivative of h(t)
h’(t) = -16*2t + 120,
h'(t)= -32t +120.
Equate the derivative with zero
h’(t)= 0.
Solve the equation -32t +120 = 0.
-32t = -120t=, t= -120/(-32)
t= 3.75s.
Find the maximum height the ball will attain t=3.75s,
h(3.75) = -16 (3.75)^2 + 120 *3.75 +2.
=-225+ 450 +2= 227ft.
Answer: 227ft.
Comments
Leave a comment