Question #143646
Prove this identity between two infinite sums (with x ∈ R and n! stands for factorial):
(∞Σn=0x^n/n!)^2=∞Σn=0(2x)^n/n!
1
Expert's answer
2020-11-12T19:30:43-0500

(n=0xnn!)2=(n=0xnn!)(m=0xmm!)=k=0m+n=km,nxnn!xmm!=\left(\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}\right)^2=\left(\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}\right)\left(\sum\limits_{m=0}^{\infty}\frac{x^m}{m!}\right)=\sum\limits_{k=0}^{\infty}\sum\limits_{\stackrel{m,n}{m+n=k}}\frac{x^n}{n!}\frac{x^m}{m!}=

=k=0n=0kxnn!xkn(kn)!=k=0(n=0k1n!1(kn)!)xk==\sum\limits_{k=0}^{\infty}\sum\limits_{n=0}^k\frac{x^n}{n!}\frac{x^{k-n}}{(k-n)!}=\sum\limits_{k=0}^{\infty}\left(\sum\limits_{n=0}^k\frac{1}{n!}\frac{1}{(k-n)!}\right)x^k=

=k=0(n=0k1n(kn)1kn)xkk!=k=0(1+1)kxkk!=k=0(2x)kk!=\sum\limits_{k=0}^{\infty}\left(\sum\limits_{n=0}^k1^n\binom{k}{n}1^{k-n}\right)\frac{x^k}{k!}=\sum\limits_{k=0}^{\infty}(1+1)^k\frac{x^k}{k!}=\sum\limits_{k=0}^{\infty}\frac{(2x)^k}{k!}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.11.20, 21:14

Dear 1805040444b, we have already solved the question and the answer has already been published.

1805040444b
13.11.20, 04:00

I just have a doubt that in question I have mentioned it as 2x^n, but in the answer, it is taken as only x^n. So please if you could recheck the answer and question. I would like a change in the answer before 15 November. Thank you Regards

LATEST TUTORIALS
APPROVED BY CLIENTS