Converting the triple integrals to spherical coordinates, we have;
"f(\u03c1,\u03d5,\u03b8)=\u03c1cos(\u03d5)\u03c1^{\u22123\/2}\\\\\n\nf(\u03c1,\u03d5,\u03b8)=cos(\u03d5)\u03c1^{\u22121\/2}"
Then for the bounds:
"\u03c1^2\u226416\\\\\n\n\u03c1\u22644"
and;
"\u03c1cos(\u03d5)\u22652\\\\\n\n\\dfrac{2}{cos(\u03d5)}\u2264\u03c1"
So:
"\\dfrac{2}{cos(\u03d5)}\u2264\u03c1\u22644"
Then since the plane crosses the sphere at z=2 where ρ=4, and z = ρcos(ϕ):
"4cos(\u03d5)=2\\\\\n\n\u03d5=\u03c0\/3"
So:
"0\u2264\u03d5\u2264\u03c0\/3"
Since it is a sphere I have: "0\u2264\u03b8\u22642\u03c0"
So my bounds are:
"\\frac{2}{cos(\u03d5)}\u2264\u03c1\u22644\\\\\n0\u2264\u03b8\u22642\u03c0"
Over:
"f(\u03c1,\u03d5,\u03b8)=cos(\u03d5)\u03c1^{\u22121\/2}"
With "dV=\u03c1^2sin(\u03d5)d\u03c1d\u03d5d\u03b8",
The integral can be written as:
"\u222b_0^{2\u03c0}\u222b_0^{\u03c0\/3}\u222b_{\\frac{2}{cos(\u03d5)}}^4\u03c1^{\u22121\/2}cos(\u03d5)\u03c1^2sin(\u03d5)d\u03c1d\u03d5d\u03b8=\\\\"
"\u222b_0^{2\u03c0}\u222b_0^{\u03c0\/3}\u222b_{\\frac{2}{cos(\u03d5)}}^4\u03c1^{-3\/2}cos(\u03d5)sin(\u03d5)d\u03c1d\u03d5d\u03b8="
"\u222b_0^{2\u03c0}d\u03b8\u222b_0^{\u03c0\/3}cos(\u03d5)sin(\u03d5)d\u03d5\u222b_{\\frac{2}{cos(\u03d5)}}^4\u03c1^{\u22123\/2}d\u03c1="
"2\u03c0\u00d7 \\frac{\u221a3}{4}\u00d7\u222b_{\\frac{2}{cos(\u03d5)}}^4\u03c1^{\u22123\/2}d\u03c1="
"\\frac{\u03c0\u221a3}{2} \u00d7 \\frac{2}{\u221a3} = \u03c0"
Comments
Leave a comment