Question #143570
Evaluate the triple integral of f(x,y,z)=z(x^2+y^2+z^2)^(−3/2) over the part of the ball x^2+y^2+z^2≤16 defined by z≥2.
1
Expert's answer
2020-11-18T17:26:47-0500

Converting the triple integrals to spherical coordinates, we have;

f(ρ,ϕ,θ)=ρcos(ϕ)ρ3/2f(ρ,ϕ,θ)=cos(ϕ)ρ1/2f(ρ,ϕ,θ)=ρcos(ϕ)ρ^{−3/2}\\ f(ρ,ϕ,θ)=cos(ϕ)ρ^{−1/2}


Then for the bounds:

ρ216ρ4ρ^2≤16\\ ρ≤4


and;

ρcos(ϕ)22cos(ϕ)ρρcos(ϕ)≥2\\ \dfrac{2}{cos(ϕ)}≤ρ



So:

2cos(ϕ)ρ4\dfrac{2}{cos(ϕ)}≤ρ≤4


Then since the plane crosses the sphere at z=2 where ρ=4, and z = ρcos(ϕ):


4cos(ϕ)=2ϕ=π/34cos(ϕ)=2\\ ϕ=π/3


So:

0ϕπ/30≤ϕ≤π/3


Since it is a sphere I have: 0θ2π0≤θ≤2π


So my bounds are:

2cos(ϕ)ρ40θ2π\frac{2}{cos(ϕ)}≤ρ≤4\\ 0≤θ≤2π

Over:

f(ρ,ϕ,θ)=cos(ϕ)ρ1/2f(ρ,ϕ,θ)=cos(ϕ)ρ^{−1/2}


With dV=ρ2sin(ϕ)dρdϕdθdV=ρ^2sin(ϕ)dρdϕdθ,


The integral can be written as:


02π0π/32cos(ϕ)4ρ1/2cos(ϕ)ρ2sin(ϕ)dρdϕdθ=∫_0^{2π}∫_0^{π/3}∫_{\frac{2}{cos(ϕ)}}^4ρ^{−1/2}cos(ϕ)ρ^2sin(ϕ)dρdϕdθ=\\

02π0π/32cos(ϕ)4ρ3/2cos(ϕ)sin(ϕ)dρdϕdθ=∫_0^{2π}∫_0^{π/3}∫_{\frac{2}{cos(ϕ)}}^4ρ^{-3/2}cos(ϕ)sin(ϕ)dρdϕdθ=


02πdθ0π/3cos(ϕ)sin(ϕ)dϕ2cos(ϕ)4ρ3/2dρ=∫_0^{2π}dθ∫_0^{π/3}cos(ϕ)sin(ϕ)dϕ∫_{\frac{2}{cos(ϕ)}}^4ρ^{−3/2}dρ=

2π×34×2cos(ϕ)4ρ3/2dρ=2π× \frac{√3}{4}×∫_{\frac{2}{cos(ϕ)}}^4ρ^{−3/2}dρ=


π32×23=π\frac{π√3}{2} × \frac{2}{√3} = π


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS