let's move on to spherical coordinates:
x = r c o s φ s i n θ , y = r s i n φ s i n θ , z = r c o s θ x = rcos\varphi sin\theta ,y = rsin\varphi sin\theta ,z = rcos\theta x = rcos φ s in θ , y = rs in φ s in θ , z = rcos θ
0 < r < 4 , 0 < φ < 2 π , 0 < θ < π 0 < r < 4,\,\,0 < \varphi < 2\pi ,\,\,0 < \theta < \pi 0 < r < 4 , 0 < φ < 2 π , 0 < θ < π
Then
x 2 + y 2 + z 2 = r 2 {x^2} + {y^2} + {z^2} = {r^2} x 2 + y 2 + z 2 = r 2
∫ ∫ ∫ E ( x 2 + y 2 + z 2 ) d V = ∫ 0 2 π d φ ∫ 0 4 r 2 d r ∫ 0 π r 2 sin θ d θ = ∫ 0 2 π d φ ∫ 0 4 r 4 d r ∫ 0 π sin θ d θ = = φ ∣ 0 2 π ⋅ r 5 5 ∣ 0 4 ⋅ ( − cos θ ) ∣ 0 π = 2 π ⋅ 4 5 5 ( − cos π + cos 0 ) = 2048 5 π ⋅ ( 1 + 1 ) = 4096 π 5 \begin{array}{l}
\int {\int {\int\limits_E {({x^2} + {y^2} + {z^2})dV = \int\limits_0^{2\pi } {d\varphi } } } } \int\limits_0^4 {{r^2}dr} \int\limits_0^\pi {{r^2}\sin \theta d\theta } = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^4 {{r^4}dr} \int\limits_0^\pi {\sin \theta d\theta } = \\
= \left. \varphi \right|_0^{2\pi } \cdot \left. {\frac{{{r^5}}}{5}} \right|_0^4 \cdot \left. {( - \cos \theta )} \right|_0^\pi = 2\pi \cdot \frac{{{4^5}}}{5}( - \cos \pi + \cos 0) = \frac{{2048}}{5}\pi \cdot (1 + 1) = \frac{{4096\pi }}{5}
\end{array} ∫ ∫ E ∫ ( x 2 + y 2 + z 2 ) d V = 0 ∫ 2 π d φ 0 ∫ 4 r 2 d r 0 ∫ π r 2 sin θ d θ = 0 ∫ 2 π d φ 0 ∫ 4 r 4 d r 0 ∫ π sin θ d θ = = φ ∣ 0 2 π ⋅ 5 r 5 ∣ ∣ 0 4 ⋅ ( − cos θ ) ∣ 0 π = 2 π ⋅ 5 4 5 ( − cos π + cos 0 ) = 5 2048 π ⋅ ( 1 + 1 ) = 5 4096 π
Answer: 4096 π 5 \frac{{4096\pi }}{5} 5 4096 π
Comments