projection of the region onto the oxy plane:
let's move on to cylindrical coordinates:
"\\begin{array}{l}\nx = r\\cos \\varphi ;\\,\\,y = r\\sin \\varphi ; z=z\\\\\n0 \\le \\varphi \\le 2\\pi ,\\,\\,0 \\le r \\le 4,\\,\\,{x^2} + {y^2} \\le z \\le 16 \\Rightarrow {r^2} \\le z \\le 16\n\\end{array}"
Then
"\\begin{array}{l}\n\\mathop {\\int {\\int {\\int {zdV} } } }\\limits_V = \\int\\limits_0^{2\\pi } {d\\varphi } \\int\\limits_0^4 {rdr} \\int\\limits_{{r^2}}^{16} {zdz} = \\frac{1}{2}\\int\\limits_0^{2\\pi } {d\\varphi } \\int\\limits_0^4 {r\\left. {{z^2}} \\right|_{{r^2}}^{16}dr} = \\frac{1}{2}\\left. \\varphi \\right|_0^{2\\pi } \\cdot \\int\\limits_0^4 {r({{16}^2} - {r^4})dr} = \\\\\n = \\frac{{2\\pi }}{2}\\int\\limits_0^4 {\\left( {256r - {r^5}} \\right)} dr = \\pi \\left( {128\\left. {{r^2}} \\right|_0^4 - \\left. {\\frac{{{r^6}}}{6}} \\right|_0^4} \\right) = \\pi \\left( {128 \\cdot 16 - \\frac{{4096}}{6}} \\right) = \\frac{{4096\\pi }}{3}\n\\end{array}" Answer: "\\frac{{4096\\pi }}{3}"
Comments
Leave a comment