Question #143559

Evaluate the following integral by converting it to cylindrical coordinates: ∫(-3 to 3)∫(0 to sqrt(9-x^2))∫(0 to 9-x^2-y^2) sqrt(x^2+y^2) dz dy dx


1
Expert's answer
2020-11-17T12:52:43-0500

I=3309x209x2y2x2+y2dzdydxConverting to cylindrical coordinates.dzdydx=ρdzdρdθx=ρcosθ,y=ρsinθx2+y2=ρ2(cos2θ+sin2θ)=ρ2y=0,sinθ=0,θ=2πy=9x2y=9ρ2cos2θx=3,ρcosθ=3x=3,ρcos(2π)=ρ=3x=3,ρcos(2π)=ρ=3y=3sinθ=99cos22π=99=0,θ=0z=9x2y2=9ρ2I=3309x209x2y2x2+y2dzdydx=3302π09ρ2ρ2ρdzdθdρ=3302π09ρ2ρ2dzdθdρ=33ρ2dρ09ρ2dz02πdθ=2π33ρ2dρ109ρ2=2π33ρ29ρ2dρSubstituteρ=3sinαI=2ππ2π29sin2α99sin2α3cosαdα=2π0π29sin2α99sin2α3cosαdα=324π0π2sin2αcos2αdα=324π(α8+sinαcosα8sinαcos3α4)0π2=324(π16)=81π24Note:aaf(x)dx=20af(x)dx,if f(x)is even.I = \int_{-3}^{3}\int_0^{\sqrt{9 - x^2}}\int_0^{\sqrt{9 - x^2 - y^2}} \sqrt{x^2 + y^2}\, \mathrm{d}z\, \mathrm{d}y\, \mathrm{d}x\\ \textsf{Converting to cylindrical coordinates.}\\ \, \mathrm{d}z\, \mathrm{d}y\, \mathrm{d}x = \rho\mathrm{d}z\, \mathrm{d}\rho\, \mathrm{d}\theta\\ x = \rho\cos{\theta}, y = \rho\sin{\theta}\\ x^2 + y^2 = \rho^2(\cos^2{\theta} + \sin^2{\theta}) = \rho^2\\ y = 0, \sin{\theta} = 0, \theta = 2\pi\\ y = \sqrt{9 - x^2}\\ y = \sqrt{9 - \rho^2\cos^2{\theta}}\\ x= -3, \rho\cos{\theta} = -3\\ x= -3, \rho\cos(2\pi) = \rho = -3\\ x= 3, \rho\cos(2\pi) = \rho = 3\\ \therefore y = 3\sin{\theta} = \sqrt{9 - 9\cos^2{2\pi}} = \sqrt{9 - 9} = 0, \theta = 0\\ z = \sqrt{9 - x^2 - y^2} = \sqrt{9 - \rho^2}\\ \begin{aligned} I = \int_{-3}^{3}\int_0^{\sqrt{9 - x^2}}\int_0^{\sqrt{9 - x^2 - y^2}} \sqrt{x^2 + y^2}\, \mathrm{d}z\, \mathrm{d}y\, \mathrm{d}x &= \int_{-3}^{3}\int_0^{2\pi} \int_0^{\sqrt{9 - \rho^2}} \sqrt{\rho^2} \cdot \rho\mathrm{d}z\, \mathrm{d}\theta\, \mathrm{d}\rho \\&=\int_{-3}^{3}\int_0^{2\pi} \int_0^{\sqrt{9 - \rho^2}} \rho^2\,\mathrm{d}z\, \mathrm{d}\theta\, \mathrm{d}\rho \\&=\int_{-3}^{3}\rho^2\,\mathrm{d}\rho\int_0^{\sqrt{9 - \rho^2}} \mathrm{d}z \int_0^{2\pi}\, \mathrm{d}\theta \\&= 2\pi\int_{-3}^{3}\rho^2\,\mathrm{d}\rho \cdot1 \vert_0^{\sqrt{9 - \rho^2}} \\&= 2\pi\int_{-3}^{3}\rho^2\sqrt{9 - \rho^2}\,\mathrm{d}\rho \end{aligned}\\ \textsf{Substitute}\, \rho = 3\sin\alpha\\ \begin{aligned} \therefore I &= 2\pi\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}9\sin^2{\alpha}\sqrt{9 - 9\sin^2\alpha}\cdot3\cos{\alpha}\mathrm{d}\alpha \\&= 2\pi\int_{0}^{\frac{\pi}{2}}9\sin^2{\alpha}\sqrt{9 - 9\sin^2\alpha}\cdot3\cos{\alpha}\mathrm{d}\alpha \\&= 324\pi\int_{0}^{\frac{\pi}{2}}\sin^2{\alpha}\cos^2{\alpha}\,\mathrm{d}\alpha \\&= 324\pi\left(\frac{\alpha}{8} + \frac{\sin{\alpha}\cos{\alpha}}{8}- \frac{\sin{\alpha}\cos^{3}{\alpha}}{4}\right)\vert_{0}^{\frac{\pi}{2}} \\&= 324\left(\frac{\pi}{16}\right) = \frac{81\pi^2}{4} \end{aligned}\\ \textsf{Note:}\, \int_{-a}^{a} f(x)\, \mathrm{d}x = 2\int_{0}^{a} f(x)\, \mathrm{d}x, \,\,\textsf{if }\,f(x) \textsf{is even.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
24.11.20, 17:54

Dear Promise Omiponle, a solution of the question applying cylindrical coordinates was published. The question requires cylindrical coordinates.

Promise Omiponle
23.11.20, 22:12

I am still only seeing the original solution.

Assignment Expert
23.11.20, 20:50

Dear Promise Omipole, a solution of the question has already been published. If you have comments on this question, you can type them here.

Promise Omiponle
23.11.20, 01:23

can I be sent an email with the new solution?

Assignment Expert
22.11.20, 23:56

Dear Promise Omiponle, cylindrical coordinates were applied in a solution of the question like the question requires.

Promise Omiponle
21.11.20, 07:10

you seem to have used spherical coordinates here, instead of cylindrical coordinates like the question states.

Assignment Expert
16.11.20, 23:28

Dear Promise Omiponle, thank you for correcting us.

Promise Omiponle
16.11.20, 04:02

you seem to have used spherical coordinates here, instead of cylindrical coordinates like the question states.

LATEST TUTORIALS
APPROVED BY CLIENTS