Evaluate the following integral by converting it to cylindrical coordinates: ∫(-3 to 3)∫(0 to sqrt(9-x^2))∫(0 to 9-x^2-y^2) sqrt(x^2+y^2) dz dy dx
"I = \\int_{-3}^{3}\\int_0^{\\sqrt{9 - x^2}}\\int_0^{\\sqrt{9 - x^2 - y^2}} \\sqrt{x^2 + y^2}\\, \\mathrm{d}z\\, \\mathrm{d}y\\, \\mathrm{d}x\\\\\n\n\\textsf{Converting to cylindrical coordinates.}\\\\\n\\, \\mathrm{d}z\\, \\mathrm{d}y\\, \\mathrm{d}x = \\rho\\mathrm{d}z\\, \\mathrm{d}\\rho\\, \\mathrm{d}\\theta\\\\\n\nx = \\rho\\cos{\\theta}, y = \\rho\\sin{\\theta}\\\\\n\nx^2 + y^2 = \\rho^2(\\cos^2{\\theta} + \\sin^2{\\theta}) = \\rho^2\\\\\n\ny = 0, \\sin{\\theta} = 0, \\theta = 2\\pi\\\\\n\ny = \\sqrt{9 - x^2}\\\\\n\ny = \\sqrt{9 - \\rho^2\\cos^2{\\theta}}\\\\\n\nx= -3, \\rho\\cos{\\theta} = -3\\\\\n\nx= -3, \\rho\\cos(2\\pi) = \\rho = -3\\\\\n\nx= 3, \\rho\\cos(2\\pi) = \\rho = 3\\\\\n\n\\therefore y = 3\\sin{\\theta} = \\sqrt{9 - 9\\cos^2{2\\pi}} = \\sqrt{9 - 9} = 0, \\theta = 0\\\\\n\nz = \\sqrt{9 - x^2 - y^2} = \\sqrt{9 - \\rho^2}\\\\\n\n\\begin{aligned}\nI = \\int_{-3}^{3}\\int_0^{\\sqrt{9 - x^2}}\\int_0^{\\sqrt{9 - x^2 - y^2}} \\sqrt{x^2 + y^2}\\, \\mathrm{d}z\\, \\mathrm{d}y\\, \\mathrm{d}x &= \\int_{-3}^{3}\\int_0^{2\\pi} \\int_0^{\\sqrt{9 - \\rho^2}} \\sqrt{\\rho^2} \\cdot \\rho\\mathrm{d}z\\, \\mathrm{d}\\theta\\, \\mathrm{d}\\rho\n\\\\&=\\int_{-3}^{3}\\int_0^{2\\pi} \\int_0^{\\sqrt{9 - \\rho^2}} \\rho^2\\,\\mathrm{d}z\\, \\mathrm{d}\\theta\\, \\mathrm{d}\\rho\n\\\\&=\\int_{-3}^{3}\\rho^2\\,\\mathrm{d}\\rho\\int_0^{\\sqrt{9 - \\rho^2}} \\mathrm{d}z \\int_0^{2\\pi}\\, \\mathrm{d}\\theta\n\\\\&= 2\\pi\\int_{-3}^{3}\\rho^2\\,\\mathrm{d}\\rho \\cdot1 \\vert_0^{\\sqrt{9 - \\rho^2}} \n\\\\&= 2\\pi\\int_{-3}^{3}\\rho^2\\sqrt{9 - \\rho^2}\\,\\mathrm{d}\\rho\n\\end{aligned}\\\\\n\n\\textsf{Substitute}\\, \\rho = 3\\sin\\alpha\\\\\n\\begin{aligned}\n\\therefore I &= 2\\pi\\int_{-\\frac{\\pi}{2}}^{\\frac{\\pi}{2}}9\\sin^2{\\alpha}\\sqrt{9 - 9\\sin^2\\alpha}\\cdot3\\cos{\\alpha}\\mathrm{d}\\alpha\n\\\\&= 2\\pi\\int_{0}^{\\frac{\\pi}{2}}9\\sin^2{\\alpha}\\sqrt{9 - 9\\sin^2\\alpha}\\cdot3\\cos{\\alpha}\\mathrm{d}\\alpha\n\\\\&= 324\\pi\\int_{0}^{\\frac{\\pi}{2}}\\sin^2{\\alpha}\\cos^2{\\alpha}\\,\\mathrm{d}\\alpha\n\\\\&= 324\\pi\\left(\\frac{\\alpha}{8} + \\frac{\\sin{\\alpha}\\cos{\\alpha}}{8}- \\frac{\\sin{\\alpha}\\cos^{3}{\\alpha}}{4}\\right)\\vert_{0}^{\\frac{\\pi}{2}}\n\\\\&= 324\\left(\\frac{\\pi}{16}\\right) = \\frac{81\\pi^2}{4}\n\\end{aligned}\\\\\n\n\n\\textsf{Note:}\\, \\int_{-a}^{a} f(x)\\, \\mathrm{d}x = 2\\int_{0}^{a} f(x)\\, \\mathrm{d}x, \\,\\,\\textsf{if }\\,f(x) \\textsf{is even.}"
Comments
Dear Promise Omiponle, a solution of the question applying cylindrical coordinates was published. The question requires cylindrical coordinates.
I am still only seeing the original solution.
Dear Promise Omipole, a solution of the question has already been published. If you have comments on this question, you can type them here.
can I be sent an email with the new solution?
Dear Promise Omiponle, cylindrical coordinates were applied in a solution of the question like the question requires.
you seem to have used spherical coordinates here, instead of cylindrical coordinates like the question states.
Dear Promise Omiponle, thank you for correcting us.
you seem to have used spherical coordinates here, instead of cylindrical coordinates like the question states.
Leave a comment