Answer to Question #143346 in Calculus for Moel Tariburu

Question #143346

Determine whether or not the following series converges. ∑_(k=1)^∞▒8k/√(k^2+5)


1
Expert's answer
2020-11-09T16:12:17-0500

k=18k(k2+5)∑_{k=1}^∞\frac{8k}{\sqrt{(k^2+5)}}

Keeping only the fastest growing terms in the numerator abd denominator, we have;

k=18kk2=k=18kk=k=18∑_{k=1}^∞\frac{8k}{\sqrt{k^2}}=∑_{k=1}^∞\frac{8k}{k}=\\ ∑_{k=1}^∞8

p = 0

This is a p-series with p \le 0 so it is divergent.


We use the limit comparison test to compare the series.

k=1ak=k=18k(k2+5)∑_{k=1}^∞ak = ∑_{k=1}^∞\frac{8k}{\sqrt{(k^2+5)}}

k=1bk=k=18∑_{k=1}^∞bk = ∑_{k=1}^∞8


akbk=8k(k2+5)8=16k(k2+5)=256k2(k2+5)=256k2(k2+5)=11/256+5/k21=L\begin{aligned} \therefore \dfrac{ak}{bk} &= \dfrac{\frac{8k}{\sqrt{(k^2+5)}}}{8}\\ \\ &= \dfrac{16k}{\sqrt{(k^2+5)}}\\ \\ &= \dfrac{\sqrt{256k^2}}{\sqrt{(k^2+5)}}\\ \\ &= \sqrt{\dfrac{256k^2}{(k^2+5)}}\\ \\ &= \sqrt{\dfrac{1}{1/256 + 5/k^2}}\\ \\ &\to 1= L \end{aligned}


According to the limit comparison test, if 0<L<\infin, we can conclude that both series are divergent if one of them is.


k=18k(k2+5)\therefore ∑_{k=1}^∞\frac{8k}{\sqrt{(k^2+5)}} is divergent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment