∑ k = 1 ∞ 8 k ( k 2 + 5 ) ∑_{k=1}^∞\frac{8k}{\sqrt{(k^2+5)}} ∑ k = 1 ∞ ( k 2 + 5 ) 8 k
Keeping only the fastest growing terms in the numerator abd denominator, we have;
∑ k = 1 ∞ 8 k k 2 = ∑ k = 1 ∞ 8 k k = ∑ k = 1 ∞ 8 ∑_{k=1}^∞\frac{8k}{\sqrt{k^2}}=∑_{k=1}^∞\frac{8k}{k}=\\
∑_{k=1}^∞8 ∑ k = 1 ∞ k 2 8 k = ∑ k = 1 ∞ k 8 k = ∑ k = 1 ∞ 8
p = 0
This is a p-series with p ≤ \le ≤ 0 so it is divergent.
We use the limit comparison test to compare the series.
∑ k = 1 ∞ a k = ∑ k = 1 ∞ 8 k ( k 2 + 5 ) ∑_{k=1}^∞ak = ∑_{k=1}^∞\frac{8k}{\sqrt{(k^2+5)}} ∑ k = 1 ∞ ak = ∑ k = 1 ∞ ( k 2 + 5 ) 8 k
∑ k = 1 ∞ b k = ∑ k = 1 ∞ 8 ∑_{k=1}^∞bk = ∑_{k=1}^∞8 ∑ k = 1 ∞ bk = ∑ k = 1 ∞ 8
∴ a k b k = 8 k ( k 2 + 5 ) 8 = 16 k ( k 2 + 5 ) = 256 k 2 ( k 2 + 5 ) = 256 k 2 ( k 2 + 5 ) = 1 1 / 256 + 5 / k 2 → 1 = L \begin{aligned}
\therefore \dfrac{ak}{bk} &= \dfrac{\frac{8k}{\sqrt{(k^2+5)}}}{8}\\
\\
&= \dfrac{16k}{\sqrt{(k^2+5)}}\\
\\
&= \dfrac{\sqrt{256k^2}}{\sqrt{(k^2+5)}}\\
\\
&= \sqrt{\dfrac{256k^2}{(k^2+5)}}\\
\\
&= \sqrt{\dfrac{1}{1/256 + 5/k^2}}\\
\\
&\to 1= L
\end{aligned} ∴ bk ak = 8 ( k 2 + 5 ) 8 k = ( k 2 + 5 ) 16 k = ( k 2 + 5 ) 256 k 2 = ( k 2 + 5 ) 256 k 2 = 1/256 + 5/ k 2 1 → 1 = L
According to the limit comparison test, if 0<L<∞ \infin ∞ , we can conclude that both series are divergent if one of them is.
∴ ∑ k = 1 ∞ 8 k ( k 2 + 5 ) \therefore ∑_{k=1}^∞\frac{8k}{\sqrt{(k^2+5)}} ∴ ∑ k = 1 ∞ ( k 2 + 5 ) 8 k is divergent
Comments