∑k=1∞(k2+5)8k
Keeping only the fastest growing terms in the numerator abd denominator, we have;
∑k=1∞k28k=∑k=1∞k8k=∑k=1∞8
p = 0
This is a p-series with p ≤ 0 so it is divergent.
We use the limit comparison test to compare the series.
∑k=1∞ak=∑k=1∞(k2+5)8k
∑k=1∞bk=∑k=1∞8
∴bkak=8(k2+5)8k=(k2+5)16k=(k2+5)256k2=(k2+5)256k2=1/256+5/k21→1=L
According to the limit comparison test, if 0<L<∞, we can conclude that both series are divergent if one of them is.
∴∑k=1∞(k2+5)8k is divergent
Comments
Leave a comment