Determine whether or not the following series converges. ∑_(k=1)^∞▒8k/√(k^2+5)
"\u2211_{k=1}^\u221e\\frac{8k}{\\sqrt{(k^2+5)}}"
Keeping only the fastest growing terms in the numerator abd denominator, we have;
"\u2211_{k=1}^\u221e\\frac{8k}{\\sqrt{k^2}}=\u2211_{k=1}^\u221e\\frac{8k}{k}=\\\\\n\u2211_{k=1}^\u221e8"
p = 0
This is a p-series with p "\\le" 0 so it is divergent.
We use the limit comparison test to compare the series.
"\u2211_{k=1}^\u221eak = \u2211_{k=1}^\u221e\\frac{8k}{\\sqrt{(k^2+5)}}"
"\u2211_{k=1}^\u221ebk = \u2211_{k=1}^\u221e8"
"\\begin{aligned}\n\\therefore \\dfrac{ak}{bk} &= \\dfrac{\\frac{8k}{\\sqrt{(k^2+5)}}}{8}\\\\\n\\\\\n&= \\dfrac{16k}{\\sqrt{(k^2+5)}}\\\\\n\\\\\n&= \\dfrac{\\sqrt{256k^2}}{\\sqrt{(k^2+5)}}\\\\\n\\\\\n&= \\sqrt{\\dfrac{256k^2}{(k^2+5)}}\\\\\n\\\\\n&= \\sqrt{\\dfrac{1}{1\/256 + 5\/k^2}}\\\\\n\\\\\n&\\to 1= L\n\\end{aligned}"
According to the limit comparison test, if 0<L<"\\infin", we can conclude that both series are divergent if one of them is.
"\\therefore \u2211_{k=1}^\u221e\\frac{8k}{\\sqrt{(k^2+5)}}" is divergent
Comments
Leave a comment