f(x+h)−f(x)=7hx2−5hx+h2x+4h2+7h3f(x+h)−f(x)h=7x2−5x+hx+4h+7h2limh→0f(x+h)−f(x)h=limh→0(7x2−5x+hx+4h+7h2)=7x2−5x+0+0+0=7x2−5x∴f′(x)=7x2−5x\displaystyle f(x+h)−f(x) =7hx^2−5hx+h^2x+4h^2+7h^3 \\ \frac{f(x+h)−f(x)}{h} =7x^2−5x+hx+4h +7h^2\\ \begin{aligned} \lim_{h \rightarrow 0} \frac{f(x+h)−f(x)}{h} &= \lim_{h \rightarrow 0}(7x^2−5x+hx+4h +7h^2) \\&= 7x^2 - 5x + 0 + 0 + 0 = 7x^2 - 5x \end{aligned}\\ \therefore f'(x) = 7x^2 - 5xf(x+h)−f(x)=7hx2−5hx+h2x+4h2+7h3hf(x+h)−f(x)=7x2−5x+hx+4h+7h2h→0limhf(x+h)−f(x)=h→0lim(7x2−5x+hx+4h+7h2)=7x2−5x+0+0+0=7x2−5x∴f′(x)=7x2−5x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment