Answer to Question #142666 in Calculus for Moel Tariburu

Question #142666
Determine whether or not the following series converges. If it converges, find its sum. ∑_(k=1)^∞▒1/7k
1
Expert's answer
2020-11-08T18:33:11-0500

k=117k\sum\limits_{k = 1}^\infty {\frac{1}{{7k}}}

We apply the integral Cauchy criterion

1dx7x=17limtlnx1t=17limt(lntln1)=17limtln=\int\limits_1^\infty {\frac{{dx}}{{7x}}} = \frac{1}{7}\mathop {\lim }\limits_{t \to \infty } \ln \left. x \right|_1^t = \frac{1}{7}\mathop {\lim }\limits_{t \to \infty } \left( {\ln t - \ln 1} \right) = \frac{1}{7}\mathop {\lim }\limits_{t \to \infty } \ln = \infty

The series diverges since the corresponding improper integral diverges



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment