"(a)\\\\ g(x)=\\dfrac{(x-1)}{(3x+2)} \\implies (3x+2)g(x)=x-1\\\\\n\\implies3xg(x)+2g(x)-x+1=0 \\implies 2g(x)+1=x-3xg(x) \\\\\n\\implies x=\\dfrac{1+2g(x)}{1-3g(x)} \\\\\n\\\\\\implies\\ g^{-1}(x)=\\dfrac{1+2x}{1-3x}; x{=}\\mathllap{\/\\,}1\/3\\\\ \\\\\n\n(b) \\\\ f(x)=4+\\sqrt{\\smash[b]{x^2+1}}; R(f):f\\ge5 \\implies f(x)-4=\\sqrt{x^2+1}\\\\\n\\implies (f(x)-4)^2=x^2+1\\\\ \n\\implies (f(x)-4)^2-1=x^2\\\\\n\\implies x=\\sqrt{(f(x)-4)^2-1}\\\\\nf^{-1}(x)=\\sqrt{{(x-4)^2-1}}; x\\ge5"
Comments
Leave a comment