Question #142451
Find its inverse
(a) g(x)=(x-1)/(3x+2)
(b) f(x)=4+ square root of (x^2+1)
1
Expert's answer
2020-11-09T17:58:35-0500

(a)g(x)=(x1)(3x+2)    (3x+2)g(x)=x1    3xg(x)+2g(x)x+1=0    2g(x)+1=x3xg(x)    x=1+2g(x)13g(x)     g1(x)=1+2x13x;x=/1/3(b)f(x)=4+x2+1;R(f):f5    f(x)4=x2+1    (f(x)4)2=x2+1    (f(x)4)21=x2    x=(f(x)4)21f1(x)=(x4)21;x5(a)\\ g(x)=\dfrac{(x-1)}{(3x+2)} \implies (3x+2)g(x)=x-1\\ \implies3xg(x)+2g(x)-x+1=0 \implies 2g(x)+1=x-3xg(x) \\ \implies x=\dfrac{1+2g(x)}{1-3g(x)} \\ \\\implies\ g^{-1}(x)=\dfrac{1+2x}{1-3x}; x{=}\mathllap{/\,}1/3\\ \\ (b) \\ f(x)=4+\sqrt{\smash[b]{x^2+1}}; R(f):f\ge5 \implies f(x)-4=\sqrt{x^2+1}\\ \implies (f(x)-4)^2=x^2+1\\ \implies (f(x)-4)^2-1=x^2\\ \implies x=\sqrt{(f(x)-4)^2-1}\\ f^{-1}(x)=\sqrt{{(x-4)^2-1}}; x\ge5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS